
SCDM: A unified approach to 
Wannier localization
Anil Damle
Computer Science, Cornell University
Wannier90 3.0, March 2020



• In collaboration with:

• Lin Lin — University of California, Berkeley
• Lexing Ying — Stanford University
• Antoine Levitt — Inria Paris

• Funding provided by:

• NSF, Simons Foundation, DOE

Acknowledgements

2



3

Todays talk: SCDM

• A “direct” method for compu<ng MLWFs

• A non-iteraEve procedure

• More generally, a robust and automated iniEalizaEon for an opEmizaEon-
based approach

• Not many parameters to choose

• First discuss the isolated case, then the entangled case

Review on MLWFs by Marzari, et. al. [2012]



• Eigenfunctions !! of a self-adjoint
Hamiltonian ℋ in interval ℐ

ℋ[#]%! & = (!%! & , (! ∈ ℐ,

• Localization problem: 
minimal set of orthonormal localized $!

(Wannier functions) such that

span 0! ⊆ span %! "!∈ℐ

Our notational perspective for today
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ℐ

λ

Associated eigenfunctions: #! $ !"#
$

Localized basis set: %! $ !"#
$!

Note: &% ≤ &



• Consider domain in % to be discretized over &" uniform gird points

• Naturally pairs with so-called plane wave methods

• Overload !! , $! , etc. as length &" vectors, &"×(& *+ &#) matrices:

Ψ =
| |
!$ ⋯ !%
| |

and  Φ =
| |
$$ ⋯ $%!
| |

Notation for this talk
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Canonical Local



The SCDM methodology
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Turns out there is some nice linear algebra under the surface



• Isolated (&# = &): 

for 1! ∈ ℐ, 1& ∉ ℐ inf 1! − 1& > 0

• : = ΨΨ∗ is the density matrix

First, simplicity: the isolated case
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(($)

+ = ΨΨ∗ =

SIAM Review reference: Benzi, Boito, Razouk [2013]; So-called Nearsightedness principle in Physics, e.g. Kohn [1959]

ℐ
λ



• For insulating systems, : = ΨΨ∗ has well-localized columns

• In fact, they decay exponentially [Kohn 1959 and 1996]

• See, e.g., Benzi, Boito, and Razouk [2013] for a nice SIAM Review article

• Columns of : are sparse vectors in the range

• Use to construct our basis

• Which raises the question: which columns should we select?

Sparse representations and fast algorithms for Kohn-Sham orbitals 8

The density matrix



Sparse representations and fast algorithms for Kohn-Sham orbitals 9

An example density matrix

• Diagonal is the electron density, ;

• Arises from the potential, <()* %



Sparse representations and fast algorithms for Kohn-Sham orbitals 10

A poor choice of columns

• Could pick any & linearly 
independent columns 
• However, there are potentially 

poor choices



Sparse representations and fast algorithms for Kohn-Sham orbitals 11

A good set of columns

• Pick columns that do not overlap 
much and are well conditioned



• Compute a column pivoted QR factorization: 

Ψ∗Π = 4 5& 5'

• 6 is the first 7( columns selected by Π

Corresponds to 7( columns of 8

• Solve (via SVD of Ψ∗ :,+):

min
,",-.

Ψ4 − ΨΨ∗ :,+ /
'

• Solution 4 yields a well localized basis Φ = ΨQ

Selected columns of the density matrix (SCDM)
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Ψ ΨQ



#Π = & '! '"
0 0

• Π is a permuta+on, keeps '! well condi+oned and encodes )

• T = '!#!'" yields #Π = #:,& + ,

• Part of a broader class of so-called rank-revealing QR factoriza+ons

• Apply to Ψ∗ instead and get a good set of pivots )

• Avoid ever having to construct +, idenGcal results when using certain algorithms
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Column pivoted QR

QRCP paper [Golub and Businger 1965], textbook [Golub and Van Loan 1996] 
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An alternative perspective

• Compute a column pivoted QR factorization: 

Ψ∗Π = 4 5& 5'

• 6 is the first 7( columns selected by Π

Corresponds to 7( columns of 8

• Solve (via SVD of Ψ∗ :,+):

min
,",-.

Ψ4 − ΨΨ∗ :,+ /
'

• Solution 4 yields a well localized basis Φ = ΨQ

Yields a well-conditioned 
set of columns of +

Templates for localized 
funcGons

Just my way of writing 
Löwdin orthogonalization
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As an initial guess for cr2o3
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wannier90 to optimize spread



• : does not decay nicely

• Use a quasi-density matrix instead

>8 =?
!
%!@ (! %!

∗ = @ A

• Decays rapidly for smooth =

• Want &# localized functions, start 
with & eigenfunctions
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What if ℐ is not isolated?

ℐ

λ

To talk about metals and insulators in a unified framework, I have omitted details of the decay rates

>8 8
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Choices for ", indicates the eigenvalues of interest

Isolated Entangled case 1 Entangled case 2

ℐ
λ

.(λ)

ℐ
λ

.(λ)

ℐ
λ

.(λ)

@ ( =
1
2
erfc "01#

2 @ ( = exp 0 "01# $
2$

ℐ = −∞, J3 ℐ = −∞, J3 ℐ = J3 − K, J3 + K



• Let Λ = diag 4! for 5 such that . 4! > 7

• Compute a rank-revealing QR factorizaGon:

( Λ Ψ∗Π = Q .& .'

• 8 is the first &% columns selected by Π

• Solve (via SVD of .(Λ)Ψ∗ :,)) 

min
*"*"+

Ψ< − Ψ .(Λ)Ψ∗ :,) ,
-

• < yields a reasonably localized basis Φ = Ψ<
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SCDM in this setting

QRCP of ?+ = . @

A subspace of dimension &% and &%
localized vectors in it

Find < to align Ψ with these columns 
(note, now &×&%)

Simultaneously finds the subspace 
and localized basis!



Now, crystals
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Illustrated in 1D for simplicity
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Periodic #(%)

Periodic atomic structure

A “unit cell” of the structure

• Potential >(%) satisfies > % + A$B$ = > % ∀ % ∈ ℝ, B$ ∈ ℤ

A+



• A so-called Bravis lattice with vector A+:	H = I|I = A+B$, B$ ∈ ℤ

• Unit cell: Γ = %|% = K$A+, − ⁄$ , ≤ K$ < ⁄$ ,

• Reciprocal lattice H∗, Fourier counterpart of H

• Its unit cell is the (first) Brillouin zone, denoted Γ∗
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Now, necessary notaLon

Γ

A+



• Solve ℋ[#]% & = (% & , ( ∈ ℐ

• Relabel spectrum of ℋ via two indices

• Band - ∈ ℕ and Brillouin zone 0 ∈ Γ∗

• Block orbitals 2",$(4): 

2",$ 4 = 7%$⋅'8",$ 4

• 8",$ is 9 periodic and solved for (on 4 ∈ Γ) via: 

ℋ 0 8",$ 4 = ;",$8",$ 4

ℋ(0) = −() ∇ + ?0
) + @(4)
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Bloch-Floquet notation

O

1

Eigenvalue of ℋ

More eigenvalues

1

1$,0"

1B,0#1B,0"

ℐ



• We want a basis PC,D % that is spatially localized

• Will construct via an alternative basis for !C,0 % denoted Q!C,0 %

• Express via a set of &×&# unitary matrices R(O) (a so-called gauge)

SΨ0 = Ψ0R O
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Basis transformations to Wannier functions

Want to identify a subspace 
and a localized basis
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Wannier functions for crystals
I = 0 I = 3

• Some Q! yields Wannier functions:

PC,E % =
1
Γ∗ V

F∗

Q!C,0 % WO

PC,E % =
1
Γ∗ V

F∗
XYC,0 % Z!0⋅4WO

• Translates for other I:

PC,D % =
1
Γ∗ V

F∗

Q!C,0 % ZH! 0⋅DWO

% ∈ ℝ and I ∈ H

A “good” basis in this sense exists only for some class of ℋ— we omit, e.g., topological insulators



• Pick a “gauge” so that N%5,6 are smooth with respect to O

• O dependent density matrix (mild notational abuse)

I 0 = J

*!,#∈ℐ
2",$2",$

∗ = J

*!,#∈ℐ
K2",$ K2",$

∗

• Gauge invariant and analytic w.r.t O

• A fixed (in O) set of “columns” of 8(O) accomplishes this

• Want them to be well conditioned (singular values uniformly bounded away from zero)
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Which '(, assuming an isolated system ()! = ))

Analytic Q!C,0 in O Localized PC,D(%)

Panati and Pisante [2013], Nenciu [1991], des Cloizeaux [1964], etc. 



• Prac<cally, discre<ze Γ∗ (simultaneously truncate H) 

• Via set R with 76 points

• Discre<ze Γ with &" uniform points

• Ψ6 =
| |

%&,6 ⋯ %7,6
| |

is 78×7 and 8 O is 7×7

• OE = 0 is known as the Γ-point
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Now, things become discrete



• Computer the QRCP

Ψ$$
∗ Π = N O( O)

• 6 is the first 7 columns selected by Π

Corresponds to 7 columns of 8

• For each O solve (via SVD of Ψ9
∗ :,+):

min
,(6)",(6)-.

Ψ64(O) − Ψ6Ψ6
∗ :,+ /

'

• Gauge 4(O) yields a smooth N%5,6
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The isolated case, algorithmically

• Need to use a single 6 for all O

• Prior work shows using the Γ-point 
suffices

• Independent problem for each O



• Isola<on condi<on across O, i.e.

inf 1C,0 − 1C%,0% > 0

• Use quasi-density matrices

>8 O =?
"(,*

%5,6@((5,6)%5,6
∗

• Numerically observed smooth in O
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The entangled case
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The entangled case

• Let Λ. = diag 4!,. for 5 such that . 4!,. > 7

• Compute the QRCP:

( Λ*! Ψ*!∗ Π = Q .& .'

• 8 is the first &% columns selected by Π

• For each B solve (via SVD of . Λ. Ψ.∗ :,)) 

min
*(.)"*(.)"+

Ψ.<(B) − Ψ. . Λ. Ψ.∗ :,) ,
-

• Gauge <(B) yields a smooth C#1,.

• Observed numerically

• Requires singular values of

@ Λ6 Ψ6
∗ :,+

uniformly bounded away from zero



• A “direct” method that does not require an ini<al guess 

• Contrast to exisEng methods

• Computa<onally efficient per O-point, the QRCP is only done once

• Only 2 parameters, [P and \ (to denote the region of interest)

• In some sense, the two “disentanglement” steps [Souza, Marzari and 
Vanderbilt 2001] are accomplished simultaneously
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SCDM for crystals



Numerical examples
Using Quantum ESPRESSO and wannier90 as needed
SCDM is now in wannier90
https://github.com/asdamle/SCDM

31



M K

-20

-15

-10

-5

0

32

Graphene
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12x12x1 k-point grid, reference calculaGon in red, and SCDM interpolant in blue
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Silicon

10x10x10 k-point grid, reference calculation in black, SCDM in blue, wannier90 in red
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Copper

10x10x10 k-point grid, reference calculation in black, SCDM in blue, wannier90 in red
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Convergence in interpolaLon
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SCDM in blue, wannier90 in red, our new optimization method in green
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SCDM in Wannier90 3.0
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Thank you to Valerio Vitale + all the Wannier90 developers



• In the .win file:

• Add an “auto_projections = .true.” line

• In the .pw2wan file:

• Add “scdm_proj = true”

• Pick Q: “scdm_entanglement = {‘isolated’, ‘erfc’, ‘gaussian’}”

• If needed set “scdm_mu =” and “scdm_sigma =”
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How to use SCDM in Wannier90 3.0
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