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Todays talk: SCDM

* A “direct” method for computing MLWFs

* A non-iterative procedure

* More generally, a robust and automated initialization for an optimization-
based approach

* Not many parameters to choose

* First discuss the isolated case, then the entangled case

Review on MLWFs by Marzari, et. al. [2012] 3



Our notational perspective for today

* Eigenfunctions {y;} of a self-adjoint

Hamiltonian H in interval J A —00-0—0—0-00—000—0—0—
7
Hiplyi(r) =29(r), A €7, []

Associated eigenfunctions: {y; (1)},

* Localization problem: [

minimal set of orthonormal localized {¢; }

1 1 . . NW
(Wannier functions) such that Localized basis set: {6 (1)},

span{¢;} S span{y;}y,es Note: Ny, < N



Notation for this talk

* Consider domain in 1 to be discretized over N, uniform gird points
* Naturally pairs with so-called plane wave methods

* Overload y;, ¢;, etc. as length N, vectors, N, X(N or N,,) matrices:

| || N |
Y=1yY; - Yy|land d=|¢1 - oy,
B | ] N |

Canonical Local




The SCDM methodology

Turns out there is some nice linear algebra under the surface




First, simplicity: the isolated case

* |Isolated (N,, = N): ﬂ | | {\

v(r)
forA; €3,4; € Jinf|A;, — ;| >0 / J UU

A —00-0—0—0-0-0—0—0—0—0—>

7 \
P = yy* =

« P = WW" is the density matrix

SIAM Review reference: Benzi, Boito, Razouk [2013]; So-called Nearsightedness principle in Physics, e.g. Kohn [1959] 7



The density matrix

* For insulating systems, P = WW* has well-localized columns

* In fact, they decay exponentially [Kohn 1959 and 1996]

* See, e.g., Benzi, Boito, and Razouk [2013] for a nice SIAM Review article

* Columns of P are sparse vectors in the range

* Use to construct our basis

* Which raises the question: which columns should we select?



An example density matrix

* Diagonal is the electron density, p
* Arises from the potential, V.. (1)

| | O |
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A poor choice of columns

i i U * Could pick any N linearly
independent columns

* However, there are potentially
poor choices

-
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A good set of columns

\l \/ \J \J \/ \/ \ \J

* Pick columns that do not overlap
much and are well conditioned

NN -
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Selected columns of the density matrix (SCDM)

Compute a column pivoted QR factorization:

Y = Q[R1 R3]

C is the first N}, columns selected by II

Corresponds to N,, columns of P

Solve (via SVD of (¥%).¢):

. 112
Jpin [[¥Q — (¥¥).c|,

Solution Q yields a well localized basis ® = W(Q

12



Column pivoted QR

PIl = Q (%1 %2)

* [T is a permutation, keeps R; well conditioned and encodes C
« T= R{'R,yieldsPll=P..(I T)
 Part of a broader class of so-called rank-revealing QR factorizations

* Apply to W™ instead and get a good set of pivots C

* Avoid ever having to construct P, identical results when using certain algorithms

QRCP paper [Golub and Businger 1965], textbook [Golub and Van Loan 1996] 13



An alternative perspective

* Compute a column pivoted QR factorization:

W' =Q[Ry Rz] «~
* Cis the first N,, columns selected by II

Corresponds to N,, columns of P

* Solve (via SVD of (W*).¢):

IS

. 112
Jpin [[¥Q — (¥¥).c|,
R

* Solution Q yields a well localized basis ® = WYQ

Yields a well-conditioned
set of columns of P

Templates for localized
functions

Just my way of writing
Lowdin orthogonalization

14



As an initial guess for cr203

200

150 =

Spread (A2

wannier90 to optimize spread

100 |

—SCDM
- - dxy,dyz,dxz| |
----Sp2

N-—
--

10 20 30 40 50
Iteration
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What if 7 is not isolated?

A ©00 000000 060 ©6 0 o

B

P P

* P does not decay nicely

* Use a quasi-density matrix instead

P=) wif )i = FUD)

* Decays rapidly for smooth f

* Want N,, localized functions, start
with N eigenfunctions

To talk about metals and insulators in a unified framework, | have omitted details of the decay rates 16



Choices for f, indicates the eigenvalues of interest

J = (—OO, [,lc) J = (—OO,‘LLC) J = (.uc —O0,Uc T 0-)

f) f)

Isolated A Entangled case 1 A Entangled case 2

JA)

F) = erfe(A) F(2) = exp (Zop?)

17



SCDM in this setting

* Let A = diag({A;}) fori such that |f(4;)| > 6 QRCP of P = f(H)
* Compute a rank-revealing QR factorization: 1
fF(MOWP*IT = Q[Ry R;] A subspace of dimension N,, and N,,

localized vectors in it

!

Find Q to align W with these columns
(note, now NXN,,)

C is the first N,, columns selected by II

Solve (via SVD of (f(A)¥™).c)

. * 2
Jpin [[¥Q — W WW)ell,

Simultaneously finds the subspace
Q yields a reasonably localized basis ® = WQ and localized basis!

18



Now, crystals

lllustrated in 1D for simplicity




A “unit cell” of the structure

- 0000000000OCGOOGOO -
aq
@= Periodic atomic structure =

* Potential v(r) satisfiesv(r + a;n,) =v(r) vV reRn; €Z

20



Now, necessary notation

a

—
- 0000000 00COCOOGLOOSO--

!
I

* A so-called Bravis lattice with vector a;: L. = {R|R = ayn,,n, € Z}
e Unitcel: T ={r|r=caq,— Y/, < c¢; <1/}

* Reciprocal lattice L, Fourier counterpart of IL

* Its unit cell is the (first) Brillouin zone, denoted I'*

21



Bloch-Floguet notation

1 More eigenvalues
* Solve H[p|Y(r) = AY(r), L€

A

, . Az g /13,k2
* Relabel spectrum of H via two indices 1,41 Y
* Band b € N and Brillouin zone k € T'* ® °
* Block orbitals ¥y, 1 (1): g » A ®
. ¢ °
V() = e®Tuy 1 (1)
* Uy is L periodic and solved for (on r € I') via: /11,](1 PY ° o
>
H () up () = Ap pup (1) A I

Hk) = —5(V + il)? + v(r) ® Eigenvalue of

22



Basis transformations to Wannier functions

* We want a basis {Wb,R (r)} that is spatially localized

» Will construct via an alternative basis for {1, ()} denoted { ¥, ;. ()}

* Express via a set of NXN,,, unitary matrices Q (k) (a so-called gauge)

P = ¥, Q (k)

Want to identify a subspace
and a localized basis

23



Wannier functions for crystals
R=0—R=3

I A

» Some 1 yields Wannier functions: * Translates for other R:
1 T, 1 I k-R
Wpo(T) = ﬁ Ypr(r)dk Wy r(T) = T Ypr(re dk
r+ r*
‘ re RandR €L
! ~ k
Wy O(T) = |F* f Up k(r)el "dk

A “good” basis in this sense exists only for some class of H — we omit, e.g., topological insulators 24



~

Which 1, assuming an isolated system (N,,

Analytic l/)~b’k ink ﬁ Localized wy, g (1)

* Pick a “gauge” so that 1/J~b,k are smooth with respect to k

* k dependent density matrix (mild notational abuse)

P(k) = z Vb k¥pk = z VbW k

)lb,kEJ Ab,kEj

* Gauge invariant and analytic w.r.t k

* Afixed (in k) set of “columns” of P(k) accomplishes this

* Want them to be well conditioned (singular values uniformly bounded away from zero)

Panati and Pisante [2013], Nenciu [1991], des Cloizeaux [1964], etc. 25



Now, things become discrete

* Practically, discretize I'" (simultaneously truncate L)

* Via set K with N points

* Discretize I' with N; uniform points

- o
* Wy =Yk - Ynk|isNygXNand P(k)is NXN
| |

* ky = 0 is known as the I'-point

26



The isolated case, algorithmically

Computer the QRCP

LP;:OH = Q[Rl Rz] <=

C is the first N columns selected by II \

* Need to use a single C for all k

Corresponds to N columns of P

* Prior work shows using the I'-point
suffices

For each k solve (via SVD of (Wy).¢):

: N 2
Q(k)rpé?k)=1||WkQ(k) B (Lp"qjk)%C”p ‘\-l * Independent problem for each k

Gauge {Q(k)} yields a smooth {1/)~b,k}

27



The entangled case

* |solation condition across k, i.e. I —— 2% i\Q
. 10:>_ 4&
inflA, , — A, | >0 2. f
N I
o O- - |
* Use quasi-density matrices 5 T \
-10
R i} L r K X r
PUO = ) P o)V ‘

Ab k

* Numerically observed smooth in k

28



The entangled case

Let Ay, = diag({}ti,k}) for i such that |f(/1i,k)| >0

Compute the QRCP:

F(AR)Wi T =Q[Ry R,] * Observed numerically
0 0

* Requires singular values of

C is the first N,, columns selected by II

For each k solve (via SVD of (f (Ap)Wp).c) (f (M) ¥h).c

: . 2 :
min  ||¥,Q (k) — qjk(f(Ak)LPk):,C”F uniformly bounded away from zero

QUOT QU= i

Gauge {Q(k)} yields a smooth {@b,k} «

29



SCDM for crystals

* A “direct” method that does not require an initial guess

* Contrast to existing methods

* Computationally efficient per k-point, the QRCP is only done once

* Only 2 parameters, u,. and o (to denote the region of interest)

* In some sense, the two “disentanglement” steps [Souza, Marzari and
Vanderbilt 2001] are accomplished simultaneously

30



Numerical examples

Using Quantum ESPRESSO and wannier90 as needed

SCDM is now in wannier90
https://github.com/asdamle/SCDM




Graphene

Graphene Graphene

I M K I K

12x12x1 k-point grid, reference calculation in red, and SCDM interpolant in blue
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Silicon

15,

—_l
o

Energy (eV)
o

K

10x10x10 k-point grid, reference calculation in black, SCDM in blue, wannier90 in red
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17

Energy (eV)
5 o

—h
N

—_k
w

10x10x10 k-point grid, reference calculation in black, SCDM in blue, wannier90 in red
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Convergence in interpolation

Al Si
PI N L
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k-points per direction k-points per direction

Interpolation RMSE convergence

SCDM in blue, wannier90 in red, our new optimization method in green N



SCDM In Wannier90 3.0

Thank you to Valerio Vitale + all the Wannier90 developers




How to use SCDM in Wannier90 3.0

* In the .win file:
e Add an “auto_projections = .true.”line
* In the .pw2wan file:
e Add “scdm_proj = true”
* Pick f: “scdm_entanglement = {‘isolated’, ‘erfc’, ‘gaussian’}”

* If needed set “scdm_mu =" and “scdm_sigma ="

37
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