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TYPE OF ORDERS

Until 1980, all ordered phases could be understood as “symmetry breaking”

Diamond Graphite

Hexagonal: P6_3/mmc #194Cubic: Fd-3m #227

Carbon gas

Symmetries: 
1. O(3) Rational 
2. Continuous translation

Examples: 
Magnets breaks time-reversal symmetry and the rotational symmetry of spins 
Superfluid breaks an internal U(1) gauge field symmetry. 

Modified from Topological effects in metals - Moore 20153



TYPE OF ORDERS

n is an integer

σxy = n
e2

h

I / /x
V / /y

B / /z

Current I along x and 
measure V along y

QHE is the first ordered phase 
beyond symmetry breaking 
discovered in 1980.

The precision of conductance 
is super high up to 10-9.

Note that the material is not 
perfect and at room temperature. 

Why so precise?
Modified from Topological effects in metals - Moore 20154



TOPOLOGICAL INVARIANTS

Two objects are topologically the same if they can be 
deformed continuously into each other without cutting and 
pasting.

Topological invariant = number of ‘holes’
5



TOPOLOGICAL INVARIANTS

Most topological invariants in physics arise as integrals of  some geometric quantity. 

Consider a two-dimensional surface Negative 0
Positive

The Gaussian curvature is defined as  
the inverse of two radii of curvature 

K = (r1r2 )
−1

Gauss-Bonnet theorem: The area 
integral of curvature over a closed 
surface M is “quantized” and is a 
topological invariant. 

K dA
M
∫∫ = 2πχ = 2π (2 − 2g) χ = 2

g = 1

Figures from wikipedia

Modified from Topological effects in metals - Moore 2015

K = 1
r2

g = 0
χ = 0
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TOPOLOGICAL INVARIANTS

ψnk(r) = eikrunk(r)

One-electron wave function in a 
crystal can be written

Bloch theorem:

where k is “crystal momentum” and u 
is periodic.  

1. A closed surface M can be made 
by a closed first BZ in 2D materials or 
a closed surface in 3D BZ. 

Analog to the previous case: 

2. Gauss curvature -> Berry curvature
BZ

{unk(r)}

How can we define Berry curvature?7



BERRY PHASE

Berry phase is the starting point to get Berry curvature

In the adiabatic limit, the Hamiltonian is changed slowly. 
The system remains in its time dependent ground states.  
The wave function evolves as 

Ψ(t) =ψ n (λ(t))e
− i dt 'εn /!

0

t

∫
e− iγ n

γ n is called the Berry phase which is a geometric phase. It doesn’t 
depend on time, only depend on the geometry of the path.

λ1

λ2

l

γ n = dλ
l
!∫ ψ n i

∂
∂λ

ψ n

In crystal system, k is the parameter λ

γ n = dk
l
!∫ A(k)

A(k) = unk i∇k unk

Berry phase:

Berry connection:

Modified from Topological effects in metals - Moore 20158



BERRY PHASE

The property of Berry phase

There is a freedom choice of phase factor of 
wave function which is called U(1) gauge freedom. 

unk → eiχ (k )unk

γ n = dk
l
!∫ A(k)

A(k) = unk i∇k unk

Berry phase:

Berry connection:

A(k)→ A(k)+∇kχ

Under this change, the Berry connection A(k) changes  
by a gradient. 

This is analogy to the vector potential in electrodynamics.
Just like how we obtained the magnetic field strength B from vector potential,  
We can get the Berry curvature by taking the curl of A(k)

Ω(k) = ∇× A(k)
Modified from Topological effects in metals - Moore 20159



BERRY PHASE—ANALOGIES

A(k) = unk i∇k unk

Berry connection

Ω(k)

Berry curvature

Vector potential

A(r)

B(r)

Magnetic field

Berry phase Aharonov-Bohm phase 

A(k)dk = dS ⋅∫∫
l
!∫ Ω(k) A(r)dr = dS ⋅∫∫

l
!∫ B(r)

1
2π

dS ⋅!∫∫ Ω(k) = integer

Chern number

dS ⋅!∫∫ B(r) = integer h
e

Dirac monopole
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BERRY PHASE—ANALOGIES

A(k) = unk i∇k unk

Berry connection Berry curvature

Ω(k) = ∇× A(k)

Berry curvature is gauge invariant. So it may be connected 
with some physical quantity.

In 1982, TKNN pointed out that the integer quantum hall effect 
in a 2D crystal follows from the integral of Ω(k). 

TKNN, PRL 49, 405 (1982)

iΩ(k)

σH = n
e2

h
“n” is the TKNN number which is also called the first Chern 
number. 

Modified from Topological effects in metals - Moore 201511
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1

2π ∮MBZ
d2kΩxy

INTRODUCTION: QUANTUM HALL EFFECT II

Ωn(k) = ∇k × An(k)

= i⟨∇kunk × |∇kunk⟩

MBZ: magnetic 
Brillouin zone

Hofstadter D. R. PRB 14, 2239

ϕ = BS0
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WANNIER FUNCTIONS

Fourier transform

There is another way called Wannier charge center to calculate the Chern number. 

Let’s start with Wannier functions.

Wannier center is defined as 

In one-dimension

Where ϕn is just the Berry phase.

In other words, a Berry phase evolving from 
0 to 2π would just correspond to a Wannier 
center evolving from x= 0 to x=a

Vanderbilt book (2019)13



WANNIER CHARGE CENTER (WCC)

n;ly ,kx =
ay
2π

eikylyay ψ n,kx ,ky
dky

0

2π /ay

∫

Let’s define a hybrid Wannier function (HWF) in a 2D crystal

The center of HWF is

yn (kx ) = n;0,kx ŷ n;0,kx

=
ay
2π

An (kx ,ky )dky
0

2π /ay

∫

An (kx ,ky ) = i unk ∂ky unk

Where

kx

ky

0
2π
ax

2π
ay

0

yn (kx ) is the Berry phase for a given kx. 

Using the Stokes' theorem, we can get
yn (kx = 2π / ax )− yn (kx = 0)

=
ay
2π

An (kx = 2π / ax ,ky )dky!∫ − An (kx = 0,ky )dky!∫⎡
⎣

⎤
⎦

=
ay
2π

∇k × An (k)BZ∫∫ dkxdky =
ay
2π

Ωn (k)BZ∫∫ dkxdky = ayC

kx0
2π
ax

0

yn

ay

kx0
2π
ax

0

yn

ay

C = 0 C = 1

Soluyanov 2011,Yu 2011,Alexandradinata  201414



kx0
2π
ax

0

yn

ay
C = 1

Let current along x direction, measure voltage along y direction 

!
E / /!x

!y V
d
!
k
dt

= − e
!

"
E

Momentum k evolves under electric field

So 
kx (t)− kx (0) = − e

!
Et

2π
ax

= − e
!
Et0 ⇒ t0 = − 2π!

eaxE

By change kx with 2pi/a, we can get the time

During this time t0, There are C number of  
electrons moving along y direction, So the current

Iy =
eC
t0

= − e
2axEC
h

jy =
Iy
ax

= −C e
2

h
E = −σ yxE⇒σ yx = C

e2

h
Vanderbilt book (2019)

WANNIER CHARGE CENTER (WCC)
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MULTI-BAND SYSTEM

C = [yn (kx = 2π / ax )− yn (kx = 0)
n∈occupied
∑ ] / ay

Let’s define a projector for all occupied states

P(k) =
dky
2π0

2π

∫
n∈occupied
∑ ψ n,kx ,ky

ψ n,kx ,ky

The Chern number of multi-band system is 

It’s clearly that yn kx( ) is the eigenvalue of 

PŷP

WCCs not only can be used to get the topological number, but also it’s related 
to the surface/edge state spectrum.

yn kx( ) are called Wannier charge centers (WCCs) 

 0.0

 0.5

 1.0

W
C

C

k

yn
ay

kx0 π
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BULK EDGE CORRESPONDENCE

Let’s study a semi-infinite system

k

ε(k)
flatten

k

ε(k)

+1

−1

H = ψ nk
n
∑ εn (k) ψ nk

!H = 1− 2 ψ nk
n∈occupied
∑ ψ nk

y

x
kx

y > 0

y < 0

Vacuum

P =
dky
2π0

2π

∫
n∈occupied
∑ ψ n,kx ,ky

ψ n,kx ,ky

V0 (y) =
1 for y ≥ 0
−1 for y < 0

⎧
⎨
⎪

⎩⎪

!H semi-infinite = PV0 (y)P + (1− P)
!H semi-infinite (y < 0) = 1− 2P

The flattened Hamiltonian should be

!H semi-infinite (y ≥ 0) = 1

In compact

Fidkowski, Jackson, Klich PRL 107, 036601 (2011)
17



BULK EDGE CORRESPONDENCE

Let’s study a semi-infinite system

!H semi-infinite = PV0 (y)P + (1− P)

!H semi-infinite includes the spectrum +1 and -1 

The boundary states are included in this term 

PV0 (y)P

V0 (y) =
1 for y ≥ 0
−1 for y < 0

⎧
⎨
⎪

⎩⎪

Where

are the eigenvalues of PV1(y)P
yn kx( )Wannier charge centers (WCCs) 

V1(y) = ŷ

Where

y

V1(y)

y

V0 (y)

y

V (y)

y

V (y)

Conclusion: 

The topology of the 
WCCs spectrum and 
the physical 
boundary spectrum 
is thus identical!

Fidkowski, Jackson, Klich PRL 107, 036601 (2011), Neupert, Schindler arXiv:1810.03484 18
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BULK EDGE CORRESPONDENCE
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HALDANE MODEL

FDM Haldane, PRL 61, 2015 (1988)

t2eiϕ

t1
m

−m

0−
π
2 ϕ

m
t2

0

3 3

−3 3

−π π
π
2

Gapless phase boundary

Trivial insulator

C = − 1

Chern insulator

C = 1

Chern insulator

Phase diagram

A toy model to realize quantum anomalous Hall effect.

The next nearest hopping t2 breaks 
the time reversal symmetry.

When t2=0 and m=0, it becomes a model of 
Graphene

Onsite energy m breaks the sublattice 
symmetry. 

⃗a 1

⃗a 2
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HALDANE MODEL-TRIVIAL INSULATOR PHASE
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Graphene model

t1 = 1;t2 = 0;m = 0
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kx0 2π

0−
π
2 ϕ

m
t2

0

3 3

−3 3

−π π
π
2

Trivial insulator

C = − 1

Chern insulator

C = 1

Chern insulator

Phase diagram

HALDANE MODEL-CHERN INSULATOR PHASE
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In the tutorial session, we will dig more about Haldane model!23



WEYL SEMIMETAL

C =
1

2π ∮BZ
d2kΩxy

Chern number is defined as integral of Berry curvature in a closed surface in 
momentum space.  For a 2D system, BZ is a closed surface.

In 3D case, we can choose a slice of BZ as a close surface. 

kz = 0

kz = π

kz = 0.2π

What if the Chern numbers of slices 
are different? For example

C(kz = 0) = 1 C(kz = π) = 0

Gapless states

24



WEYL SEMIMETAL

kz = 0

kz = π

A 2-band toy model

M 0 = M1 = A = 1

C = 1 C = 0

25



WEYL SEMIMETAL

C =
1

2π ∮S
Ω ⋅ dS

We can continuous modify the closed slice at kz=0 
such that it becomes  a sphere enclosing the Weyl 
points. 

Non-trivial Chern number means that the 
Berry curvature is not trivial. Positive Chern 
number indicates that the Weyl point is the 
source of Berry curvature. 26



WEYL SEMIMETAL

What kind of surface states would Weyl semimetal has?

C=1

Review:

kx

ky

kx0 2π

Let’s study the (010) surface where there is 
no periodicity along y direction.

−X Γ X

−M MZ

−X Γ X

C(kz = 0) = 1

Γ−X X

−M MZ C(kz = 0) = 1

C(kz = π ) = 0

C(kz = π ) = 0

−M MZ 27



QUANTUM SPIN HALL EFFECT

If a system has time reversal symmetry

Ω(k) = −Ω(−k)

C =
1

2π ∮BZ
d2kΩ(k) = 0

Then Chern number vanishes!

Are all time reversal symmetry preserved 
systems trivial?

The answer is no!

Consider this case:
You have two spaces which are related by time 
reversal symmetry.  And two spaces has 
opposite non-trivial Chern number C+ and C-. 

Then we may define a new topological 
number Z= C+ -C-. This number is not zero 
even with time reversal symmetry. 28



QUANTUM SPIN HALL EFFECT

One example of such a system with time reversal symmetry is the Kane-Mele model.

t2eiϕ

t1
m

−m

Kane-Mele model is a doubled copy of Haldane model. 

t2e−iϕ

t1
m

−m

Spin up Spin down
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In total

C+ = 1 C− = − 1

Z2 = mod(C+ − C−,2) = 1
Topological number

Kane & Mele PhysRevLett.95.226801 (2005)
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QUANTUM SPIN HALL EFFECT

How to realize such QSHE states?

Kane-Mele point out that the imaginary next-nearest hopping can be realized 
if we take into account the spin-orbital coupling (SOC) effect. A sad thing is 
that the SOC effect in Graphene is negligible.

In 2006, Bernevig, Hughes, Zhang noticed that QSHE can be realized when the 
energy bands get inverted by SOC. It can be realized in HgTe QWs. 

Bernevig, Hughes, Zhang, Science 314, 1757 (2006)

Kane & Mele PhysRevLett.95.226801 (2005)

One example: 1T’-WSe2

-2
-1.5
-1

-0.5
0

0.5
1

1.5
2

X G Y M G

En
er
gy

(e
V)

30



QUANTUM SPIN HALL EFFECT

One example: 1T’-WSe2

ky0 π

-Y

Z2=1 31



3D TOPOLOGICAL INSULATOR

Extent QSHE to 3D topological insulator (TI) is not a trivial thing, since there are four 
topological numbers named (v0;v1v2v3) in 3D TI. 

Z2 number is calculated in the time-reversal 
invariant plane. There are six such planes. Each 
of them can give you one Z2 number, which give 
us 6 numbers. However not all of them are 
independent. Specifically, there is a constraint.

This product is called the strong topological 
invariant v0.

are chosen as v1,v2,v3.

32



3D TOPOLOGICAL INSULATOR

Bi2Se3 is theoretical predicted and experimental validated as a strong 3D TI.
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3D TOPOLOGICAL INSULATOR

Bi2Se3 is theoretical predicted and experimental validated as a strong 3D TI.
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Topological number is 
(v0;v1v2v3)=(1;000)

k1 = 0 k1 = 0.5

k2 = 0 k2 = 0.5

k3 = 0 k3 = 0.5
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3D TOPOLOGICAL INSULATOR

Bi2Se3 is theoretical predicted and experimental validated as a strong 3D TI.

kx

ky

Surface states
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CONCLUSION

1. Introduced some preliminaries of Berry phase and topological properties.

2. Introduced Haldane model, Weyl semimetal, QSHE and 3D TI.
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CONCLUSION

There are a lot of physical properties that related to the bulk topology that are not 
introduced in this talk due to the time limit, includes

37

• anomalous Hall conductivity 

• orbital magnetization 

• spin Hall conductivity 

• the Berry curvature dipole  

• the kinetic magnetoelectric effect (kME)  

• Shift current 

• …

Those properties can be calculated using the latest Wannier90 v3.1.0.
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Thank you for your attention!


