

Ecole polytechnique fédérale de Lausanne

Berry phase and topological properties

Wannier tutorial March 25, 2020 Virtual conference edition

QuanSheng Wu

École polytechnique fédérale de Lausanne, Switzerland

OUTLINE

- Theory
 - Berry phase, Berry curvature
 - Wannier charge center
 - Bulk-edge correspondence
- Applications
 - Haldane model
 - Weyl semimetal
 - QSHE and topological insulator

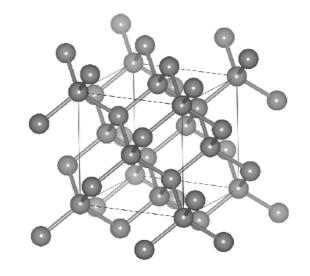
TYPE OF ORDERS

Until 1980, all ordered phases could be understood as "symmetry breaking"

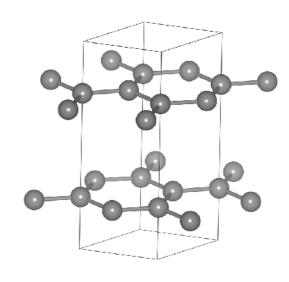
Carbon gas

Symmetries:

- 1. O(3) Rational
- 2. Continuous translation



Diamond



Graphite

Cubic: Fd-3m #227 Hexagonal: P6_3/mmc #194

Examples:

Magnets breaks time-reversal symmetry and the rotational symmetry of spins Superfluid breaks an internal U(1) gauge field symmetry.

TYPE OF ORDERS

QHE is the first ordered phase beyond symmetry breaking discovered in 1980.

Current I along x and measure V along y

$$\sigma_{xy} = n \frac{e^2}{h}$$

n is an integer

The precision of conductance is super high up to 10⁻⁹.

Note that the material is not perfect and at room temperature.

Why so precise?

electrons can move along edge (conducting) B//z86 10 $R_{\rm xx} \, ({\rm k}\Omega)$

10

Modified from Topological effects in metals - Moore 2015

TOPOLOGICAL INVARIANTS

Two objects are topologically the same if they can be deformed continuously into each other without cutting and pasting.

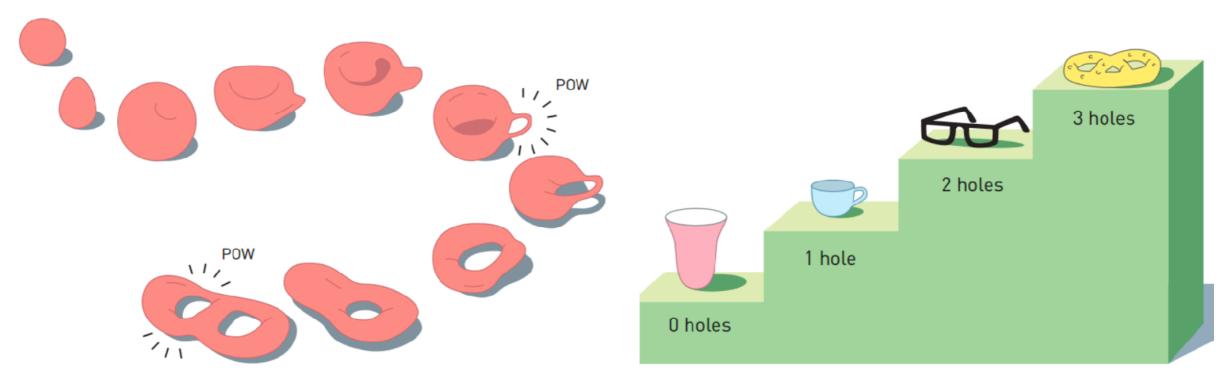


Illustration: ©Johan Jarnestad/The Royal Swedish Academy of Sciences

Topological invariant = number of 'holes'

TOPOLOGICAL INVARIANTS

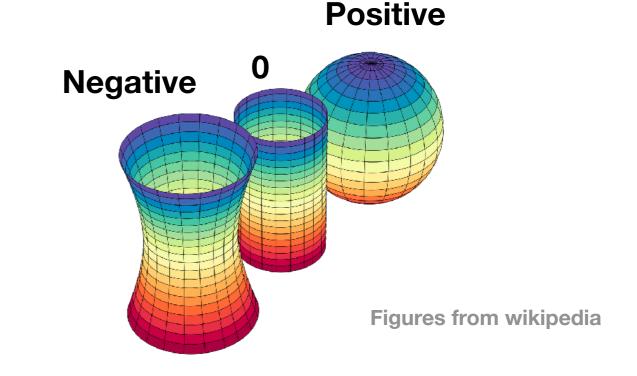
Consider a two-dimensional surface

The Gaussian curvature is defined as the inverse of two radii of curvature

$$K = (r_1 r_2)^{-1}$$

Gauss-Bonnet theorem: The area integral of curvature over a closed surface M is "quantized" and is a topological invariant.

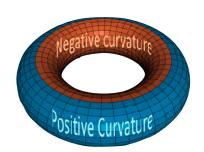
$$\iint\limits_{M} K \, dA = 2\pi \chi = 2\pi (2 - 2g)$$



$$K = \frac{1}{r^2}$$

$$\chi = 2$$

$$g = 0$$



$$\chi = 0$$
$$g = 1$$

Most topological invariants in physics arise as integrals of some geometric quantity.

TOPOLOGICAL INVARIANTS

Bloch theorem:

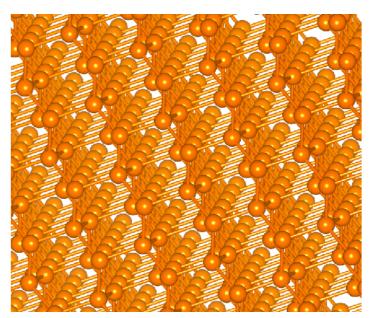
One-electron wave function in a crystal can be written

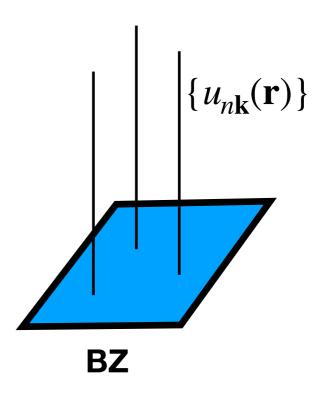
$$\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$$

where k is "crystal momentum" and u is periodic.

Analog to the previous case:

- 1. A closed surface M can be made by a closed first BZ in 2D materials or a closed surface in 3D BZ.
- 2. Gauss curvature -> Berry curvature





How can we define Berry curvature?

BERRY PHASE

Berry phase is the starting point to get Berry curvature

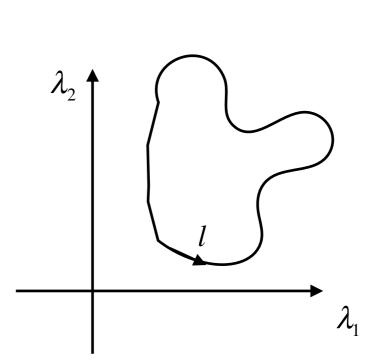
In the adiabatic limit, the Hamiltonian is changed slowly. The system remains in its time dependent ground states. The wave function evolves as

$$\Psi(t) = \psi_n(\lambda(t))e^{-i\int_0^t dt' \varepsilon_n/\hbar} e^{-i\gamma_n}$$

 γ_n is called the Berry phase which is a geometric phase. It doesn't depend on time, only depend on the geometry of the path.

$$\gamma_n = \oint_I d\lambda \langle \psi_n | i \frac{\partial}{\partial \lambda} | \psi_n \rangle$$

Berry phase: $\gamma_n = \oint_l dk A(k)$ Berry connection: $A(k) = \left\langle u_{nk} \middle| i \nabla_k \middle| u_{nk} \right\rangle$



BERRY PHASE

The property of Berry phase

Berry phase: $\gamma_n = \oint_l dk A(k)$

Berry connection: $A(k) = \langle u_{nk} | i \nabla_k | u_{nk} \rangle$

There is a freedom choice of phase factor of wave function which is called U(1) gauge freedom.

$$u_{nk} \rightarrow e^{i\chi(k)} u_{nk}$$

Under this change, the Berry connection A(k) changes by a gradient.

$$A(k) \rightarrow A(k) + \nabla_k \chi$$

This is analogy to the vector potential in electrodynamics.

Just like how we obtained the magnetic field strength B from vector potential, We can get the Berry curvature by taking the curl of A(k)

$$\Omega(k) = \nabla \times A(k)$$

BERRY PHASE—ANALOGIES

Berry connection

$$A(k) = \left\langle u_{nk} \middle| i \nabla_k \middle| u_{nk} \right\rangle$$

Berry curvature

$$\Omega(k)$$

Berry phase

$$\oint_{l} A(k) dk = \iint_{l} dS \cdot \Omega(k)$$

Chern number

$$\frac{1}{2\pi} \oiint dS \,\Omega(k) = \text{integer}$$

Vector potential

Magnetic field

Aharonov-Bohm phase

$$\oint_{l} A(r) dr = \iint_{l} dS \cdot B(r)$$

Dirac monopole

BERRY PHASE—ANALOGIES

Berry connection Berry curvature

$$A(k) = \langle u_{nk} | i \nabla_k | u_{nk} \rangle \qquad \Omega(k) = \nabla \times A(k)$$

$$\Omega(k) = \nabla \times A(k)$$

Berry curvature is gauge invariant. So it may be connected with some physical quantity.

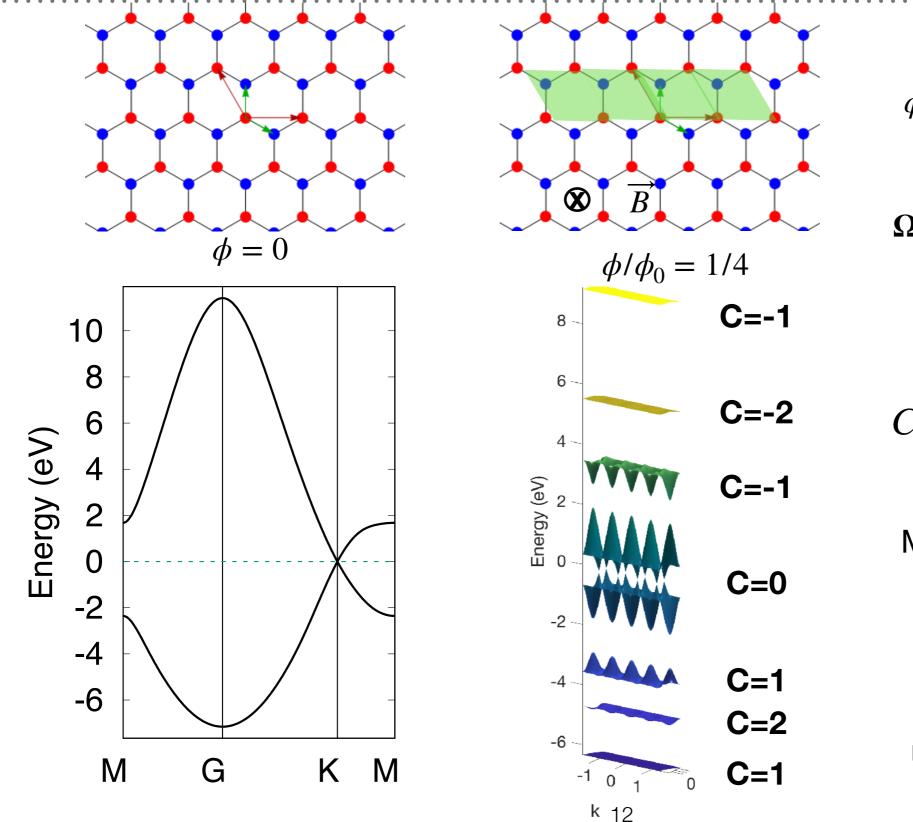
In 1982, TKNN pointed out that the integer quantum hall effect in a 2D crystal follows from the integral of $\Omega(k)$.

$$\sigma_{\rm H} = \frac{ie^2}{2\pi h} \sum \int d^2k \int d^2r \left(\frac{\partial u^*}{\partial k_1} \frac{\partial u}{\partial k_2} - \frac{\partial u^*}{\partial k_2} \frac{\partial u}{\partial k_1} \right)$$

$$= \frac{ie^2}{4\pi h} \sum \oint dk_j \int d^2r \left(u^* \frac{\partial u}{\partial k_j} - \frac{\partial u^*}{\partial k_j} u \right),$$
(5)

$$\sigma_{\!H} = n \frac{e^2}{h}$$
 "n" is the TKNN number which is also called the first Chern number.

INTRODUCTION: QUANTUM HALL EFFECT II



$$\phi = BS_0$$

$$\Omega_n(\mathbf{k}) = \nabla_{\mathbf{k}} \times \mathbf{A}_n(\mathbf{k})$$
$$= i \langle \nabla_{\mathbf{k}} u_{n\mathbf{k}} \times | \nabla_{\mathbf{k}} u_{n\mathbf{k}} \rangle$$

$$C = \frac{1}{2\pi} \oint_{MBZ} d^2k\Omega_{xy}$$

MBZ: magnetic Brillouin zone

Hofstadter D. R. PRB 14, 2239

WANNIER FUNCTIONS

There is another way called Wannier charge center to calculate the Chern number. Let's start with Wannier functions.

Fourier transform

$$|w_{n\mathbf{R}}\rangle = \frac{V_{\text{cell}}}{(2\pi)^3} \int_{\text{BZ}} e^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{n\mathbf{k}}\rangle d^3k$$

$$\updownarrow \text{FT}$$

$$|\psi_{n\mathbf{k}}\rangle = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} |w_{n\mathbf{R}}\rangle.$$

Wannier center is defined as

$$\begin{split} \bar{\mathbf{r}}_n &= \langle w_{n\mathbf{0}} | \mathbf{r} | w_{n\mathbf{0}} \rangle \\ &= \frac{V_{\text{cell}}}{(2\pi)^3} \int_{\text{BZ}} \langle u_{n\mathbf{k}} | i \boldsymbol{\nabla}_{\mathbf{k}} u_{n\mathbf{k}} \rangle \ d^3k \\ &= \frac{V_{\text{cell}}}{(2\pi)^3} \int_{\text{BZ}} \mathbf{A}_n(\mathbf{k}) \ d^3k \end{split}$$

In one-dimension

$$\bar{x}_n = (a/2\pi) \int_0^{2\pi/a} \langle u_{nk} | i\partial_k u_{nk} \rangle dk$$
$$= a \frac{\phi_n}{2\pi}$$

Where ϕ_n is just the Berry phase.

In other words, a Berry phase evolving from 0 to 2π would just correspond to a Wannier center evolving from x=0 to x=a

WANNIER CHARGE CENTER (WCC)

Let's define a hybrid Wannier function (HWF) in a 2D crystal

$$\left|n;l_{y},k_{x}\right\rangle = \frac{a_{y}}{2\pi} \int_{0}^{2\pi/a_{y}} e^{ik_{y}l_{y}a_{y}} \left|\psi_{n,k_{x},k_{y}}\right\rangle dk_{y}$$

The center of HWF is

$$\overline{y}_n(k_x) = \langle n; 0, k_x | \hat{y} | n; 0, k_x \rangle$$

$$= \frac{a_y}{2\pi} \int_0^{2\pi/a_y} A_n(k_x, k_y) dk_y$$

Where

$$A_{n}(k_{x},k_{y}) = i \langle u_{nk} | \partial_{k_{y}} | u_{nk} \rangle$$

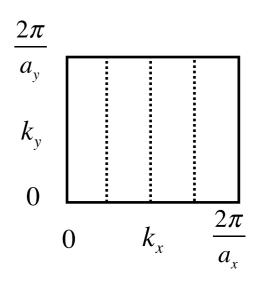
 $\overline{y}_n(k_x)$ is the Berry phase for a given k_x.

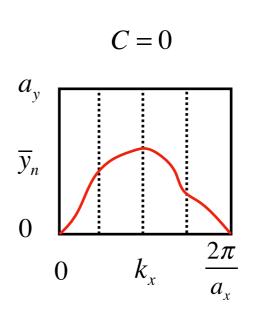
Using the Stokes' theorem, we can get

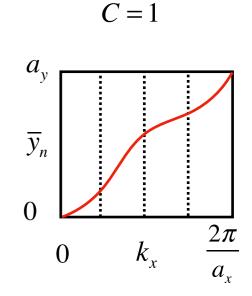
$$\overline{y}_n(k_x = 2\pi / a_x) - \overline{y}_n(k_x = 0)$$

$$= \frac{a_y}{2\pi} \left[\oint A_n(k_x = 2\pi / a_x, k_y) dk_y - \oint A_n(k_x = 0, k_y) dk_y \right]$$

$$= \frac{a_y}{2\pi} \iint_{BZ} \nabla_k \times A_n(k) dk_x dk_y = \frac{a_y}{2\pi} \iint_{BZ} \Omega_n(k) dk_x dk_y = a_y C$$

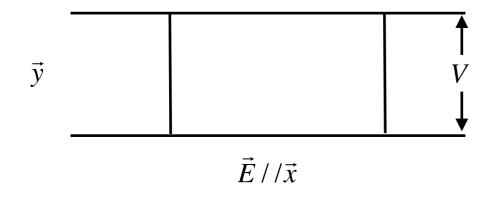


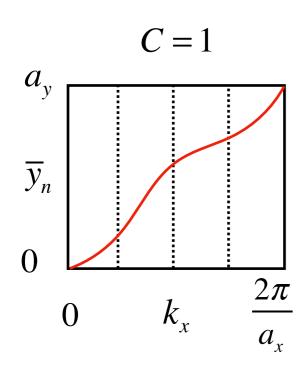




WANNIER CHARGE CENTER (WCC)

Let current along x direction, measure voltage along y direction





Momentum k evolves under electric field

$$\frac{d\vec{k}}{dt} = -\frac{e}{\hbar}\vec{E}$$

So

$$k_{x}(t) - k_{x}(0) = -\frac{e}{\hbar}Et$$

By change k_x with 2pi/a, we can get the time

$$\frac{2\pi}{a_x} = -\frac{e}{\hbar}Et_0 \Longrightarrow t_0 = -\frac{2\pi\hbar}{ea_x E}$$

During this time t0, There are C number of electrons moving along y direction, So the current

$$I_{y} = \frac{eC}{t_{0}} = -\frac{e^{2}a_{x}EC}{h}$$

$$j_{y} = \frac{I_{y}}{a_{x}} = -C\frac{e^{2}}{h}E = -\sigma_{yx}E \Rightarrow \sigma_{yx} = C\frac{e^{2}}{h}$$

MULTI-BAND SYSTEM

The Chern number of multi-band system is

$$C = \sum_{n \in occupied} \left[\overline{y}_n(k_x = 2\pi / a_x) - \overline{y}_n(k_x = 0) \right] / a_y$$

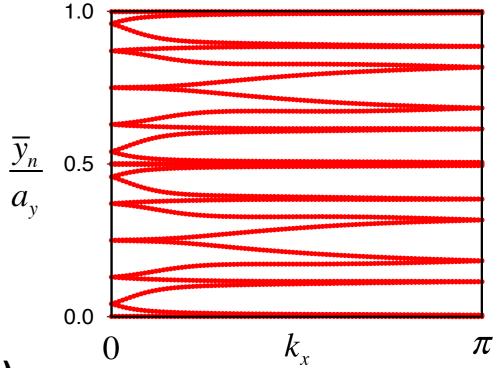
Let's define a projector for all occupied states

$$P(k) = \sum_{n \in occupied} \int_0^{2\pi} \frac{dk_y}{2\pi} |\psi_{n,k_x,k_y}\rangle \langle \psi_{n,k_x,k_y}|$$

It's clearly that $\overline{y}_n(k_x)$ is the eigenvalue of

$$P\hat{y}P$$

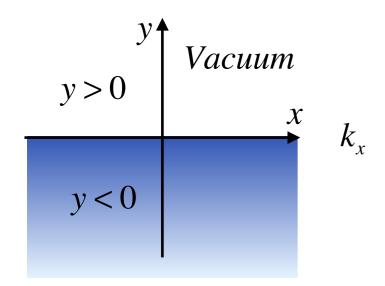
 $\overline{y}_n(k_x)$ are called Wannier charge centers (WCCs)



WCCs not only can be used to get the topological number, but also it's related to the surface/edge state spectrum.

BULK EDGE CORRESPONDENCE

Let's study a semi-infinite system

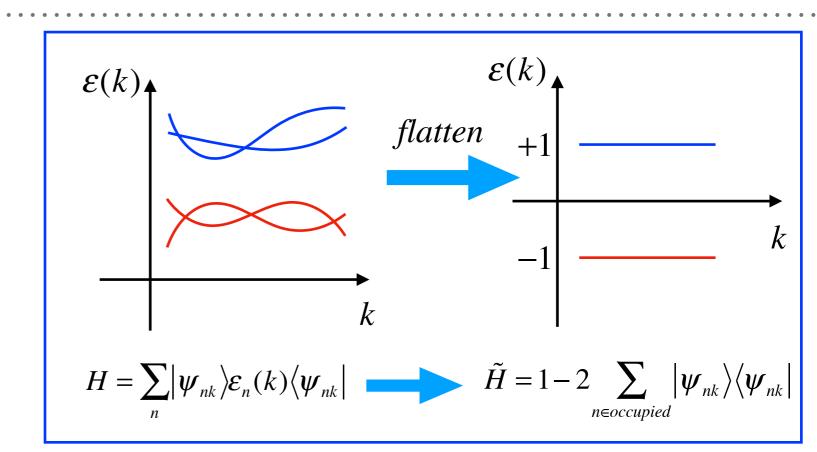


$$P = \sum_{n \in occupied} \int_0^{2\pi} \frac{dk_y}{2\pi} |\psi_{n,k_x,k_y}\rangle \langle \psi_{n,k_x,k_y}|$$

The flattened Hamiltonian should be

$$\tilde{H}_{\text{semi-infinite}}(y < 0) = 1 - 2P$$

$$\tilde{H}_{\text{semi-infinite}}(y \ge 0) = 1$$



In compact

$$\tilde{H}_{\text{semi-infinite}} = PV_0(y)P + (1-P)$$

$$V_0(y) = \begin{cases} 1 & \text{for } y \ge 0 \\ -1 & \text{for } y < 0 \end{cases}$$

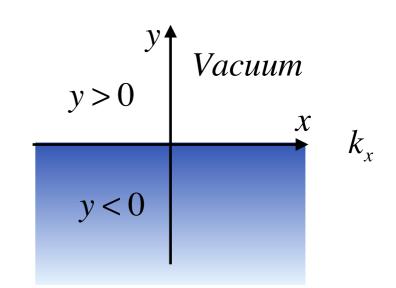
BULK EDGE CORRESPONDENCE

Let's study a semi-infinite system

$$\tilde{H}_{\text{semi-infinite}} = PV_0(y)P + (1-P)$$

 $ilde{H}_{ ext{semi-infinite}}$ includes the spectrum +1 and -1

The boundary states are included in this term



$PV_0(y)P$

Where

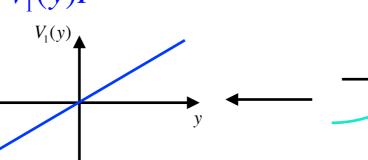
$$V_0(y) = \begin{cases} 1 & \text{for } y \ge 0 \\ -1 & \text{for } y < 0 \end{cases}$$



Wannier charge centers (WCCs) $\overline{y}_n(k_x)$ are the eigenvalues of $PV_1(y)P$

Where

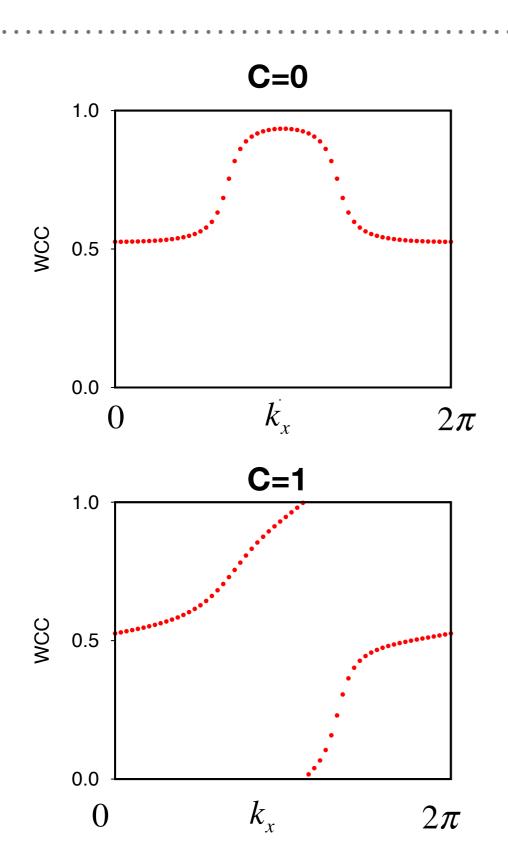
$$V_1(y) = \hat{y}$$

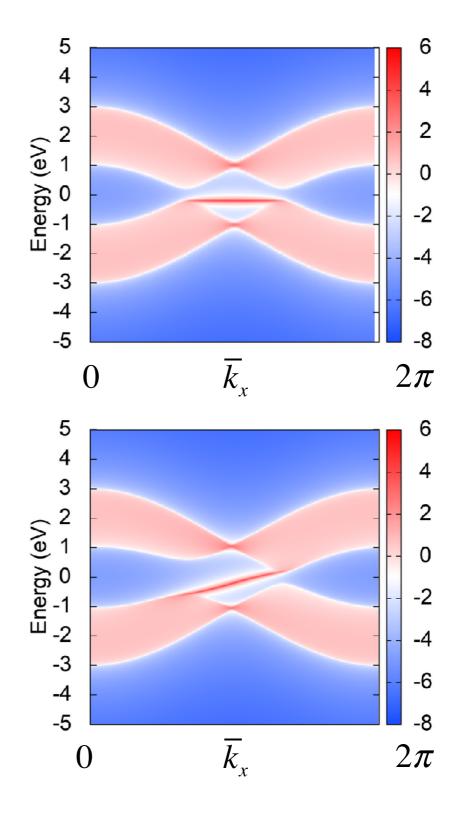


Conclusion: The topolog

The topology of the WCCs spectrum and the physical boundary spectrum is thus identical!

BULK EDGE CORRESPONDENCE



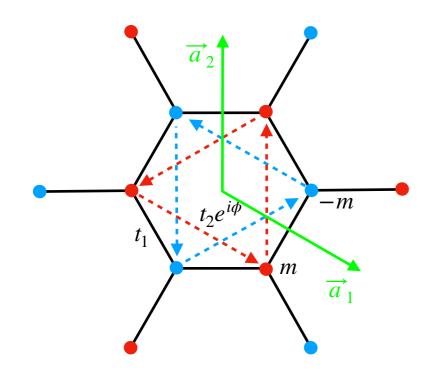


OUTLINE

- Theory
 - Berry phase, Berry curvature
 - Wannier charge center
 - Bulk-edge correspondence
- Applications
 - Haldane model
 - Weyl semimetal
 - QSHE and topological insulator

HALDANE MODEL

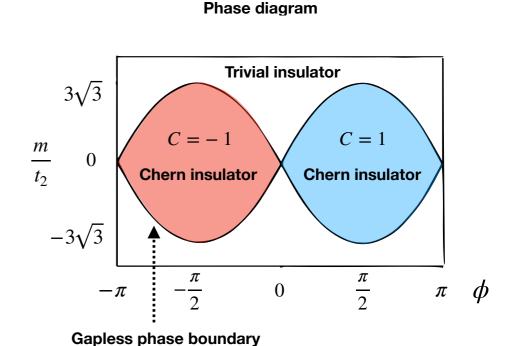
A toy model to realize quantum anomalous Hall effect.



The next nearest hopping t₂ breaks the time reversal symmetry.

Onsite energy m breaks the sublattice symmetry.

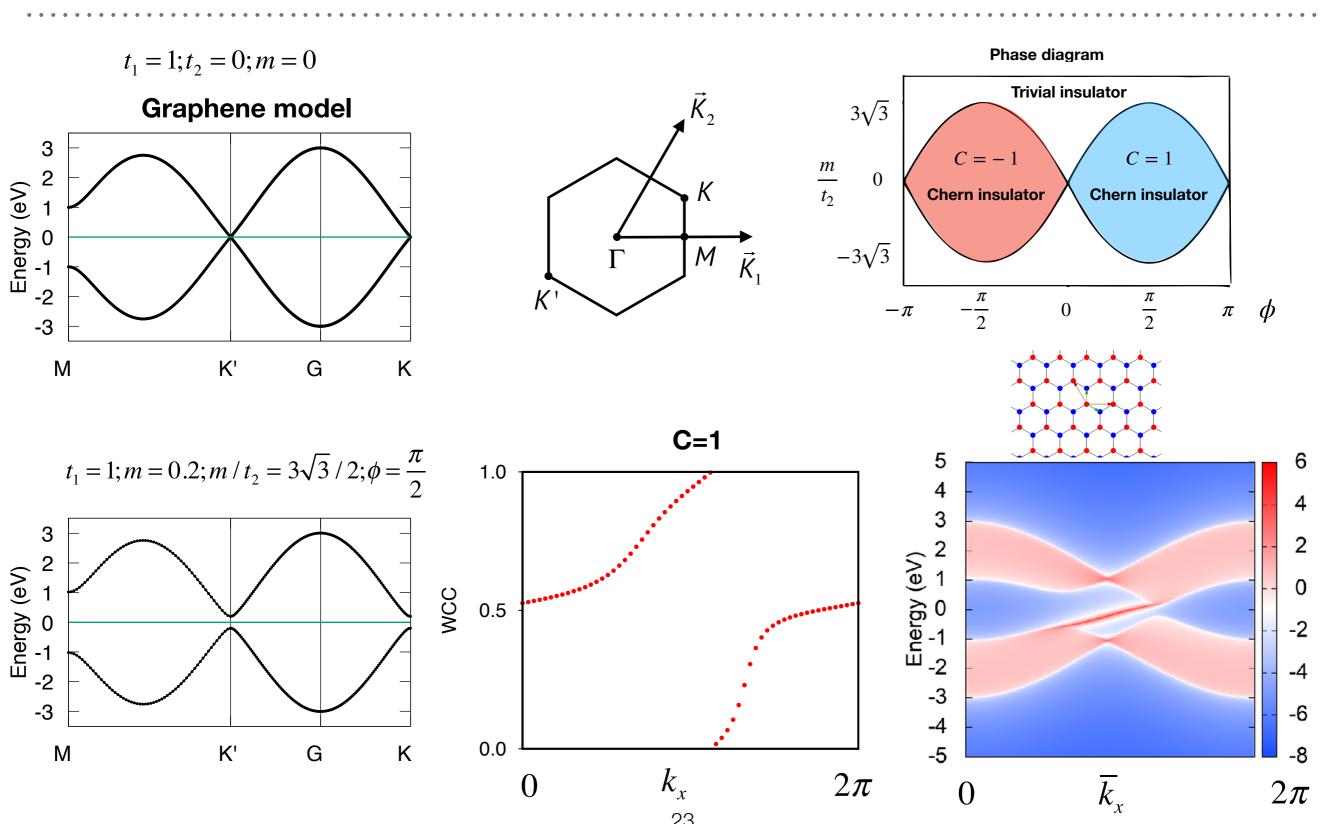
When t₂=0 and m=0, it becomes a model of Graphene



HALDANE MODEL-TRIVIAL INSULATOR PHASE

Phase diagram $t_1 = 1; t_2 = 0; m = 0$ **Trivial insulator Graphene model** $3\sqrt{3}$ 3 2 Energy (eV) 0 **Chern insulator Chern insulator** Μ π φ K' G M C=0 $t_1 = 1; t_2 = 0; m = 0.2; m / t_2 = \infty$ 5 1.0 3 2 Energy (eV) 7 1 2 2 1 2 Energy (eV) WCC 0.5 -2 -2 -3 -4 K' G K M 0.0 2π 2π

HALDANE MODEL-CHERN INSULATOR PHASE

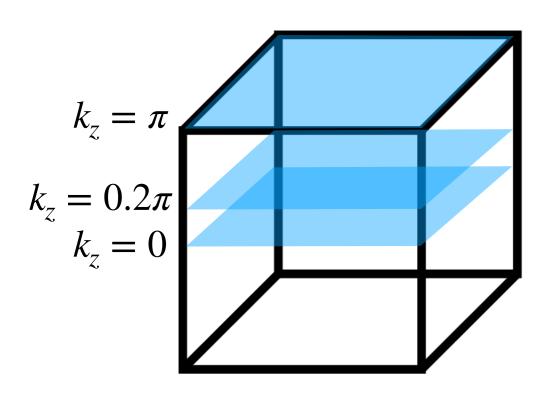


In the tutorial session, we will dig more about Haldane model!

Chern number is defined as integral of Berry curvature in a closed surface in momentum space. For a 2D system, BZ is a closed surface.

$$C = \frac{1}{2\pi} \oint_{BZ} d^2k \Omega_{xy}$$

In 3D case, we can choose a slice of BZ as a close surface.



What if the Chern numbers of slices are different? For example

$$C(k_z=0)=1$$

$$C(k_z=\pi)=0$$
 Gapless states



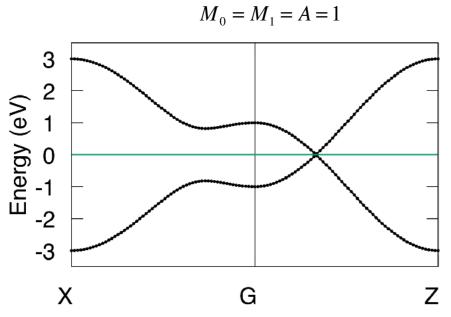
A 2-band toy model

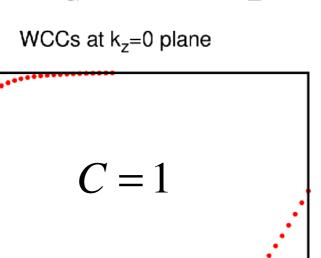
1.0

1 > 0.5

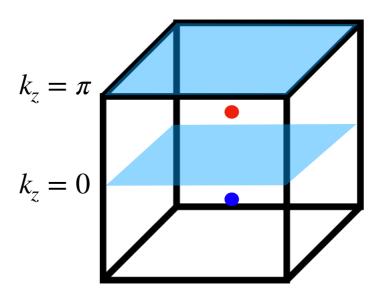
0.0

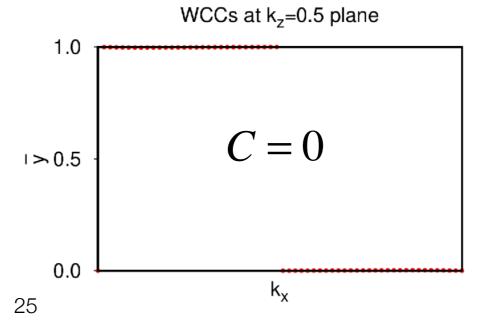
$$H = A(k_x \sigma_x + k_y \sigma_y) + [M_0 - M_1(k_x^2 + k_y^2 + k_z^2)]\sigma_z$$



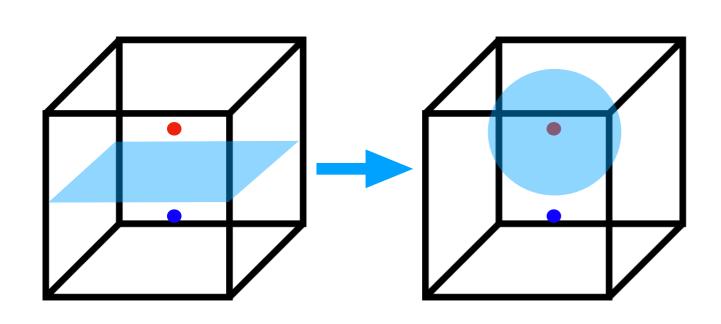


 k_{x}



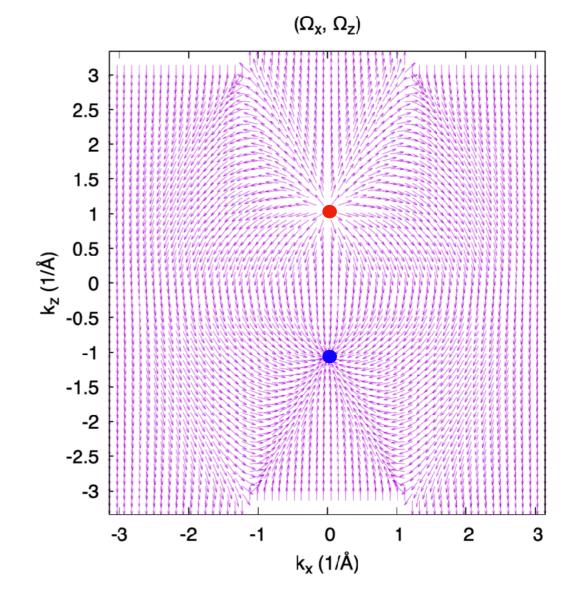


We can continuous modify the closed slice at kz=0 such that it becomes a sphere enclosing the Weyl points.



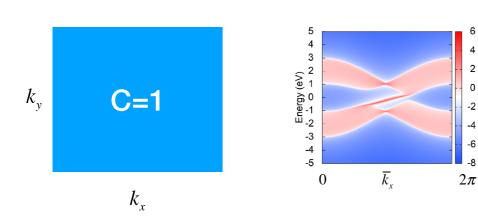
$$C = \frac{1}{2\pi} \oint_{S} \Omega \cdot dS$$

Non-trivial Chern number means that the Berry curvature is not trivial. Positive Chern number indicates that the Weyl point is the source of Berry curvature.

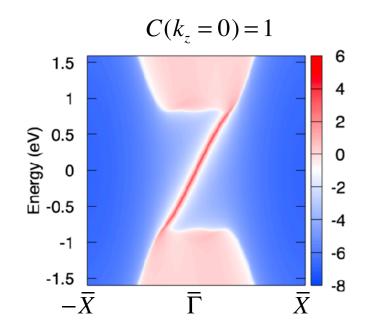


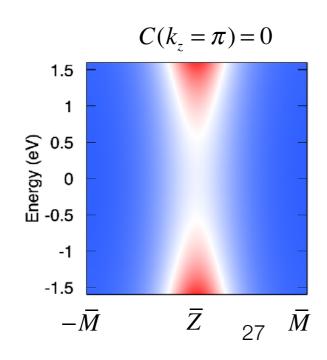
What kind of surface states would Weyl semimetal has?

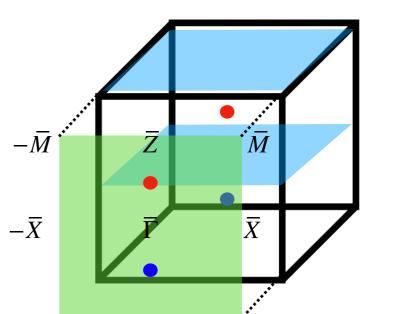
Review:

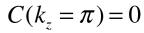


Let's study the (010) surface where there is no periodicity along y direction.

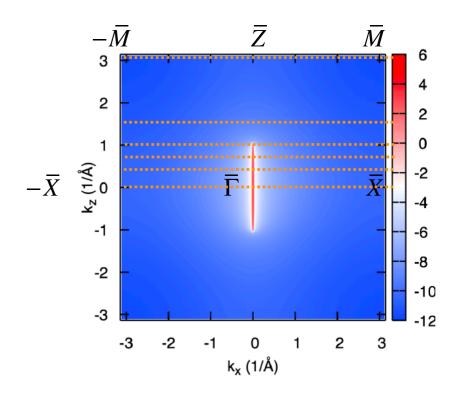








$$C(k_z=0)=1$$



If a system has time reversal symmetry

$$\Omega(k) = -\Omega(-k)$$

Then Chern number vanishes!

$$C = \frac{1}{2\pi} \oint_{BZ} d^2k\Omega(k) = 0$$

Are all time reversal symmetry preserved systems trivial?

The answer is no!

Consider this case:

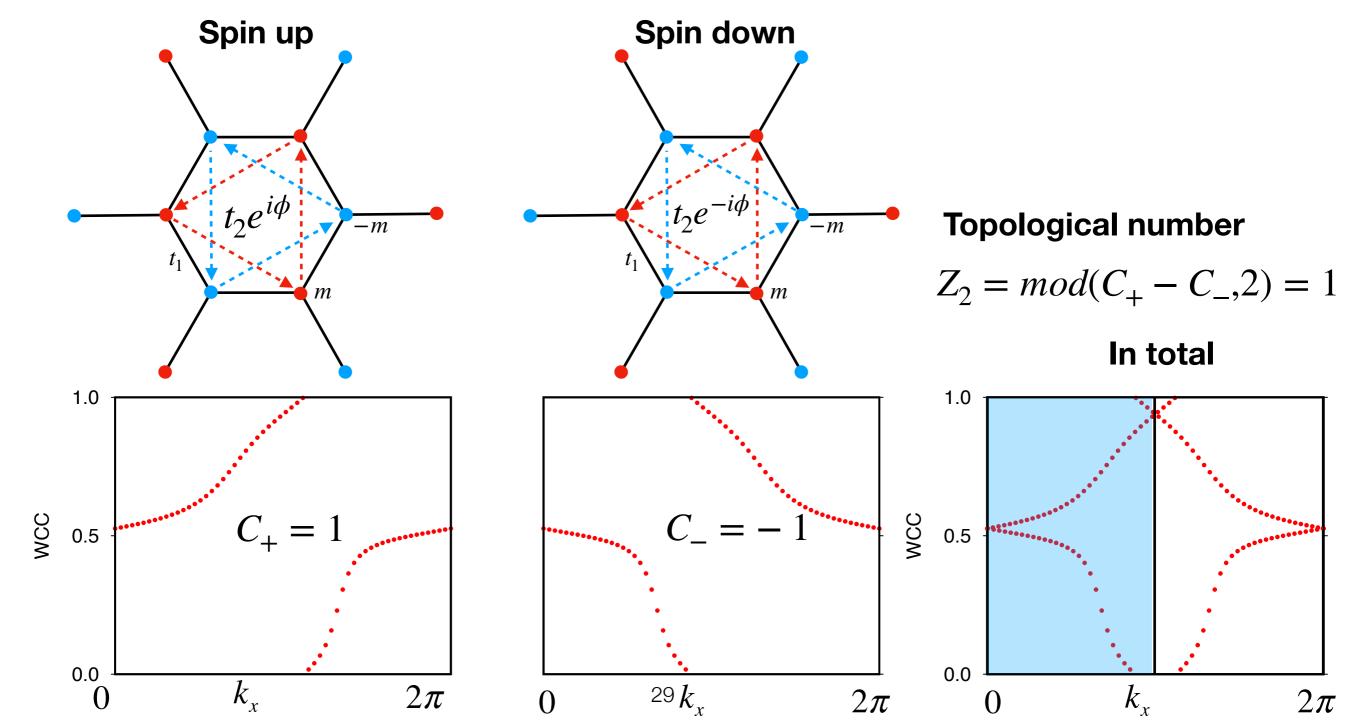
You have two spaces which are related by time reversal symmetry. And two spaces has opposite non-trivial Chern number C₊ and C₋.

Then we may define a new topological number Z= C+ -C-. This number is not zero even with time reversal symmetry.

One example of such a system with time reversal symmetry is the Kane-Mele model.

Kane-Mele model is a doubled copy of Haldane model.

Kane & Mele PhysRevLett.95.226801 (2005)



How to realize such QSHE states?

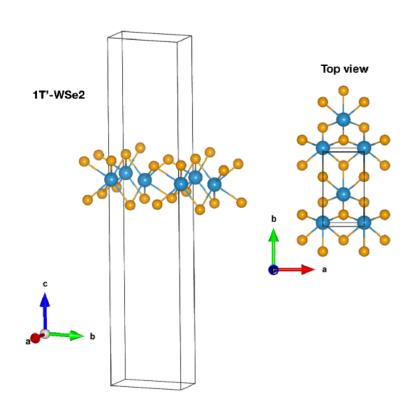
Kane-Mele point out that the imaginary next-nearest hopping can be realized if we take into account the spin-orbital coupling (SOC) effect. A sad thing is that the SOC effect in Graphene is negligible.

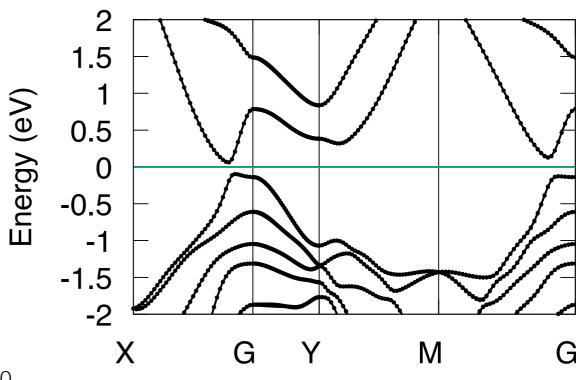
Kane & Mele PhysRevLett.95.226801 (2005)

In 2006, Bernevig, Hughes, Zhang noticed that QSHE can be realized when the energy bands get inverted by SOC. It can be realized in HgTe QWs.

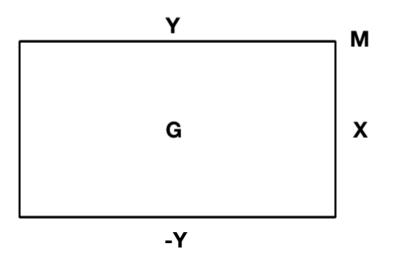
Bernevig, Hughes, Zhang, Science 314, 1757 (2006)

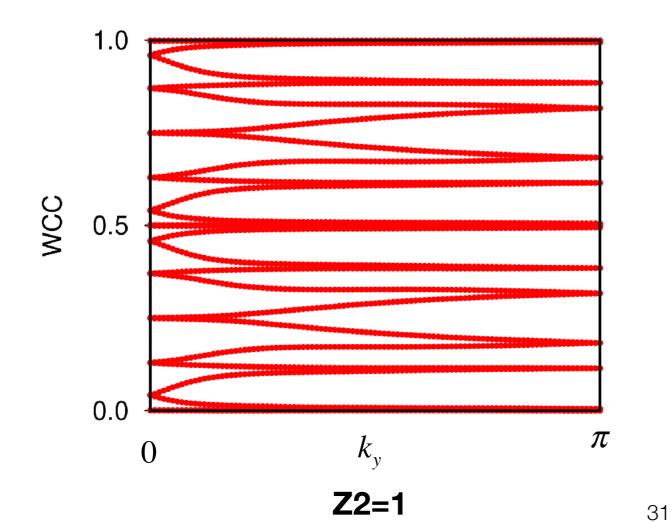
One example: 1T'-WSe2

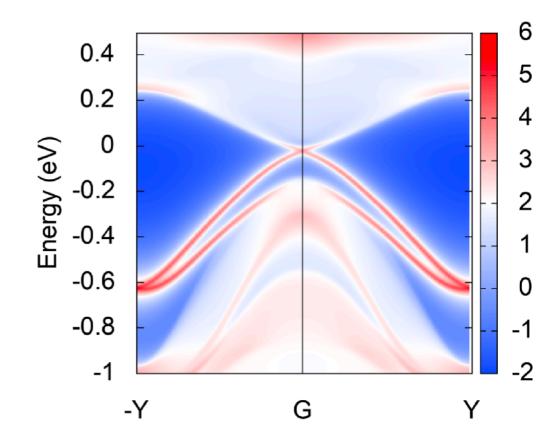




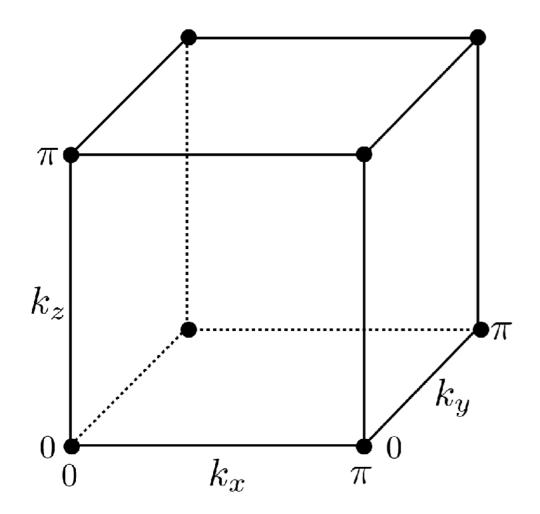
One example: 1T'-WSe2







Extent QSHE to 3D topological insulator (TI) is not a trivial thing, since there are four topological numbers named (v₀;v₁v₂v₃) in 3D TI.



Z2 number is calculated in the time-reversal invariant plane. There are six such planes. Each of them can give you one Z2 number, which give us 6 numbers. However not all of them are independent. Specifically, there is a constraint.

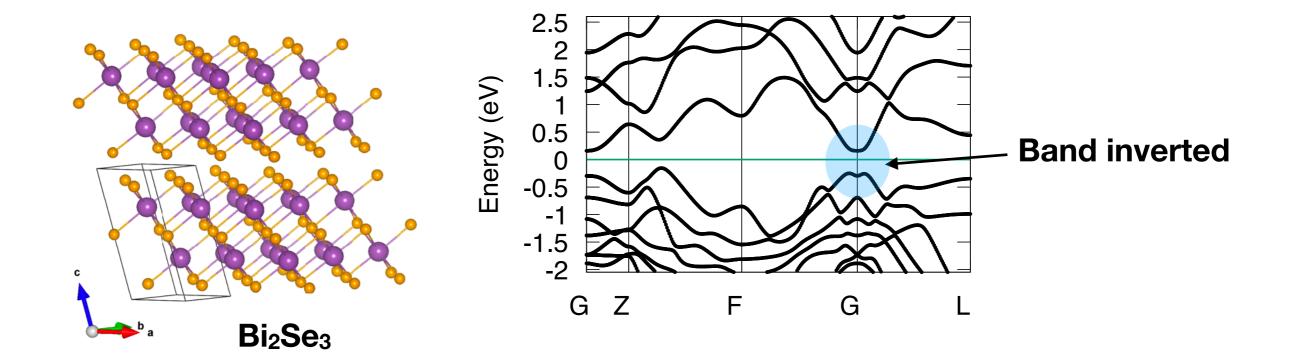
$$Q(k_x=0)\,Q(k_x=\pi)\equiv Q(k_y=0)\,Q(k_y=\pi)\equiv Q(k_z=0)\,Q(k_z=\pi)$$

This product is called the strong topological invariant v₀.

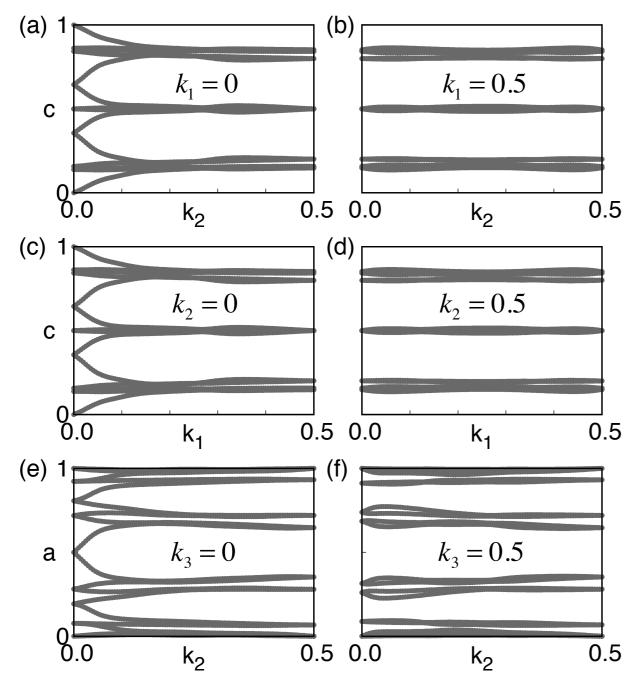
$$Q(k_x=\pi),\,Q(k_y=\pi),\,Q(k_z=\pi)$$

are chosen as v₁,v₂,v₃.

Bi₂Se₃ is theoretical predicted and experimental validated as a strong 3D TI.



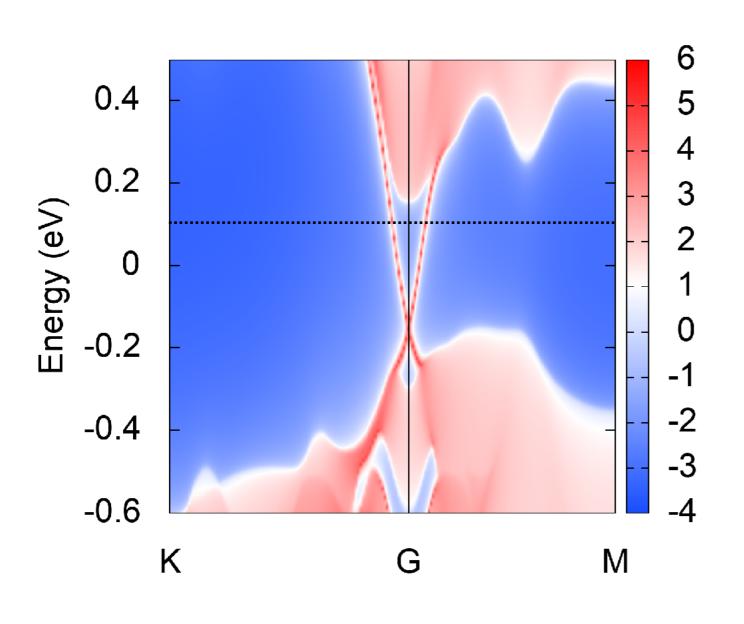
Bi₂Se₃ is theoretical predicted and experimental validated as a strong 3D TI.



Topological number is $(v_0;v_1v_2v_3)=(1;000)$

Bi₂Se₃ is theoretical predicted and experimental validated as a strong 3D TI.

Surface states



Spin texture 0.2 0.1 \overline{k}_{y} -0.1 -0.2 -0.15-0.1-0.05 0 0.05 0.1 0.15

CONCLUSION

1. Introduced some preliminaries of Berry phase and topological properties.

2. Introduced Haldane model, Weyl semimetal, QSHE and 3D TI.

CONCLUSION

There are a lot of physical properties that related to the bulk topology that are not introduced in this talk due to the time limit, includes

- anomalous Hall conductivity
- orbital magnetization
- spin Hall conductivity
- the Berry curvature dipole
- the kinetic magnetoelectric effect (kME)
- Shift current

• ...

Those properties can be calculated using the latest Wannier90 v3.1.0.

Thank you for your attention!