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e Theory
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TYPE OF ORDERS

Carbon gas q

Symmetries:
1. O(3) Rational
2. Continuous translation

Diamond Graphite
Cubic: Fd-3m #227 Hexagonal: P6_3/mmc #194

Examples:
Magnets breaks time-reversal symmetry and the rotational symmetry of spins
Superfluid breaks an internal U(1) gauge field symmetry.
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TYPE OF ORDERS

electrons can move along edge (conducting)

QHE is the first ordered phase B//z
beyond symmetry breaking A el
discovered in 1980. >
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The precision of conductance i 110 =
Is super high up to 10-°
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Why so precise?




TOPOLOGICAL INVARIANTS

Two objects are topologically the same if they can be
deformed continuously into each other without cutting and
pasting.

Topological invariant = number of ‘holes’



TOPOLOGICAL INVARIANTS
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Consider a two-dimensional surface

The Gaussian curvature is defined as
the inverse of two radii of curvature

K = (7’17’2 )_1

Figures from wikipedia

Gauss-Bonnet theorem: The area
integral of curvature over a closed

surface M is “quantized” and is a 1 o (et
topological invariant. K = — ‘
r 05iiye Cunvatu
S
”KdA =27y =2m(2-2g)
X=2 x=0
M
g= 0 g= |
Most topological invariants in physics arise as integrals of some geometric quantity.
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TOPOLOGICAL INVARIANTS

Bloch theorem

One-electron wave function in a

crystal can be written

Wnk(r) — eikrunk(r)
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Analog to the previous case

1. A closed surface M can be made

by a closed first BZ in 2D materials or

a closed surface in 3D BZ.

2. Gauss curvature -> Berry curvature

How can we define Ben;y curvature?



BERRY PHASE

Berry phase is the starting point to get Berry curvature

In the adiabatic limit, the Hamiltonian is changed slowly.
The system remains in its time dependent ground states.

The wave function evolves as

t

~i[dr'e, n

Y@&)=y (A(t))e ° e

V. is called the Berry phase which is a geometric phase. It doesn’t
depend on time, only depend on the geometry of the path.

v, =$dAly,
[

In crystal system, k is the parameter A A4

iilw
YA

Berry phase: Y, = Cj)dkA(k)
[
A% k| unk>

Berry connection: A(k)=(u,,

>

A

8 Modified from Topological effects in metals - Moore 2015



BERRY PHASE

The property of Berry phase

Berry phase: Y, = CﬁdkA(k)
[

iV,

Berry connection: A(k)= <unk unk>

There is a freedom choice of phase factor of
wave function which is called U(1) gauge freedom.

iy (k)

U . —> € 7%

Under this change, the Berry connection A(k) changes
by a gradient.

Ak)—> A(k)+V y

This is analogy to the vector potential in electrodynamics.

Just like how we obtained the magnetic field strength B from vector potential,
We can get the Berry curvature by taking the curl of A(k)

Q(k)=V X A(k)

Modified from Topological effects in metals - Moore 2015



Berry connection

A(k)={(u,|iV,

unk >

Berry curvature

Q(k)

Berry phase

b Ak)dk = [[ds k)
l

Chern number

|
—qbdS Q(k) = integer
——§pds Qi) = integ
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BERRY PHASE—ANALOGIES

Vector potential
A(r)

Magnetic field
B(r)

Aharonov-Bohm phase
<J5A(r)dr — j j ds -B(r)
l

Dirac monopole

ﬁdS -B(r) = integer h
e



BERRY PHASE—ANALOGIES

Berry connection Berry curvature
A(k)=(u,|iV,|u,) Q(k)=V x A(k)

Berry curvature is gauge invariant. So it may be connected
with some physical quantity.

In 1982, TKNN pointed out that the integer quantum hall effect
in a 2D crystal follows from the integral of Q(k).
Q)

_ie? f 5 fz <8u* du  qu* au)
UH-ZnhE 4k JA\ 3% 3%, ~ ok, ok,
ou*
d?r (u* 2 - u) (5)
f i Ok; )’

oy = Nn— “n” is the TKNN number which is also called the first Chern
h number.

TKNN, PRL 49, 405 (1982)
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INTRODUCTION: QUANTUM HALL EFFECT I

Q,(k) = Vi X A,(k)

[y = 1/4 .
¢ ¢O — l< Vkunk X |Vkunk>
10 8 - C=-1
8 B 6 - 1
S o 4- - C=-2 C = 2—4> dzkﬂxy
2 i T JmBz
- ; %2‘_'““ C=-1
% 0 w MBZ: magnetic
- 2k m C=0 Brillouin zone
4 |
-6 | -4 “‘ C=1
6 \ C=2
M G K M }0 C=1 Hofstadter D. R. PRB 14, 2239



WANNIER FUNCTIONS

There is another way called Wannier charge center to calculate the Chern number.

Let’s start with Wannier functions.

Fourier transform

(27)3 Jgz . .
§ FT In one-dimension
_ ik-R
hbnk) = ;6 |wnR> . T, = (Q/Zﬂ') 0277/‘1 <unk|zakunk> dk
Wannier center is defined as —a n
27

r, = <wn0|r|wn0>

y Where ¢ is just the Berry phase.
cell

= (271‘)3 /Bz<unk|ivkunk> dgk

In other words, a Berry phase evolving from
Veell

5 0 to 27t would just correspond to a Wannier
= A, (k) d’k .
(2m)3 Jgy center evolving from x= 0 to x=a

13 Vanderbilt book (2019)



WANNIER CHARGE CENTER (WCC)

Let’s define a hybrid Wannier function (HWF) in a 2D crystal

2rla
a Y 27
ml Lk y=—2 | " dk =
‘ y x> 271_ ‘(’; l//n,kx,ky> y ay
The center of HWF is k,
y,(k.)={(n;0,k |3 n;0,k, ) 0 -
2nla, _71'
= [ Ak, k,)dk 0 kg
2 5 7
Where
A,k k) =i, 0, |, ) C=0 C=1
— ] . a - - -
y (k) is the Berry phase for a given k. o “
Using the Stokes' theorem, we can get Y y,
v, (k=27 /a,)-7,(k,=0) 0 0
a 2r
_ ﬁ[(ﬁAﬂ(kx =21/ a,.k)dk,— Ak, :O,ky)dky} 0 kg
_4 _ 4 _
o .” BZVk X A, (k)dk,dk, 2T J- BZ €2, () dkdk, a{f Soluyanov 2011,Yu 2011,Alexandradinata 2014



WANNIER CHARGE CENTER (WCC)

Let current along x direction, measure voltage along y direction

<

— < —>

E//%
C=1
ay
Y,
0 ?2
0o k=
a

Vanderbilt book (2019)

Momentum k evolves under electric field

dk __eg
dt h

So .
k(D)= k,(0) == Er

By change kx with 2pi/a, we can get the time
2T

e 21h
—=——FEt,=t,=—
a h ea I

X

During this time t0, There are C number of
electrons moving along y direction, So the current

/ _é__ezaxEC
A h
2 2
I, e
Jjy=—="C—FE=-0, F=0, =C—



MULTI-BAND SYSTEM

The Chern number of multi-band system is

2, Gk =2r/a)-y,(k,=0)]/aq,

neoccupied

Let’s define a projector for all occupied states ’ e —
P(k) — Z J Pyl Wnk k ><Wn,kx,ky & 0.5 el
neoccupied Cly .. ......
It’s clearly that y,(k,) is the eigenvalue of
PP I —
0 k T

y,(k,) are called Wannier charge centers (WCCs)

WCCs not only can be used to get the topological number, but also it’s related
to the surface/edge state spectrum.
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BULK EDGE CORRESPONDENCE

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Let’s study a semi-infinite system E(k)a (k)

yA
Vacuum ; —X k
y > O > _1
k. k
F H=2|l//nk>8n(k)<l//nk| » H=1-2 Z |Wnk><Wnk
n neoccupied
2r dk
P = 2 JO 2_7; l//n,kx,ky><Wn,kx ,ky
neoccupied In compact

The flattened Hamiltonian should be -

Hsemi—infinite — P‘/O (y)P + (1 o P)
semi-infinite (y ) 1 fQI‘ y 2 O
] Vo(y) =1
H i iintinie (¥ 2 0) =1 -1 fory<O0
17
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BULK EDGE CORRESPONDENCE

Let’s study a semi-infinite system

yA
_ Vacuum
semi-infinite PVO (y)P + (1 _ P) Y >0
X
kx
H_ .. includes the spectrum +1 and -1
The boundary states are included in this term
PV,(y)P
Where " SN
1 fory=0 >
V() =+ ’ I ;
-1 fory<O _/
Wannier charge centers (WCCs) 7, (k,) Conclusion:
are the eigenvalues of PV (y)P Vo) s / The topology of the
Where i) WCCs spectrum and
> the physical
Vi =y " boundary spectrum
is thus identical!

Fidkowski, Jackson, Klich PRL 107, 036601 (2011), Neupert, Schindler arXiv:1810.03484 18



BULK EDGE CORRESPONDENCE

C=0
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OUTLINE

e Applications
e Haldane model
e Weyl semimetal

e QSHE and topological insulator

20 QS WuTMM colloquium 2019



HALDANE MODEL

Phase diagram

Trivial insulator

m
E 0 Chern insulator Chern insulator
~3¢/3
iz 0 7 T
The next nearest hopping t2 breaks pepless phase Boundary

the time reversal symmetry.

Onsite energy m breaks the sublattice
symmetry.

When t2=0 and m=0, it becomes a model of
Graphene

21



HALDANE MODEL-TRIVIAL INSULATOR PHASE

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

tl — 1;1‘2 — 0; m=0 Phase diagram
— Trivial insulator
Graphene model K, 3v/3
3 ] m C=-1 C=1
% ? : K Z 0 Chern insulator Chern insulator
>0 >
%-1 - M g -3/3
u‘—] 1
-2 — K'
—7T
3 i &
M K' G K
C=0
t=1t,=0m=02;m/t, =00 10 5 6
............ . .
3 - - 3 |
—~ 2 - S 2 1r1 2
T 1 1 o - 3 e 119
5 O (g) 05 foeocecessecet™  TC%escecescest 5 O |
2 -1 . Q0 1 1 -2
LLl o L ] L ) 1l 4
3 - -3 -
-4 -6
M K G K 0.0 = I =
0 k_ 27 27



HALDANE MODEL-CHERN INSULATOR PHASE
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tl =1 tz =0:m=0 Phase diagram
— Trivial insulator
Graphene model K, 3v/3
3 ] m C=-1 C=1
% ? a K Z 0 Chern insulator Chern insulator
>0 >
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In the tutorial session, we will diéSmore about Haldane model!



WEYL SEMIMETAL

Chern number is defined as integral of Berry curvature in a closed surface in
momentum space. For a 2D system, BZ is a closed surface.

1 y)
C=— d kay
2w )5,

In 3D case, we can choose a slice of BZ as a close surface.

What if the Chern numbers of slices
are different? For example

C(k,=0) =1 Clk, =) =0
Z kz _ 0 \/ Gapless states \/
AKX A

24



WEYL SEMIMETAL

A 2-band toy model
H = A(kyop + kyoy) + [Mo — My (ks + k) + k)]0

M,=M,=A=1

WCCs at k,=0.5 plane

1.0
1>0.5 C:1 . 1>0.5 C:O
............ "’ 0.0
0.0 y K,

X 25



WEYL SEMIMETAL

We can continuous modify the closed slice at kz=0

such that it becomes a sphere enclosing the Weyl

points.

(QX! QZ)

L 0 I I A B N A A

Non-trivial Chern number means that the

ky (1/A)

Berry curvature is not trivial. Positive Chern

number indicates that the Weyl point is the

source of Berry curvature.

20



WEYL SEMIMETAL

What kind of surface states would Weyl semimetal has?
Review:

||||E|gy(v)
GO P WON_20=2NWAO

(@]
><»‘.
| , M
N b & ANV o v~ oo
|
=

N /]

Let’s study the (010) surface where there is
no periodicity along y direction.

. N 6
Ck,=0)=1 Ck,=m)=0 )
15 6 15
4 2
1 1 0
- 2
> 0.5 S 05 2
Q )
S— 0 N
s 0 5 0 -4
2 2 2 6
w -0.5 w -0.5
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QUANTUM SPIN HALL EFFECT

If a system has time reversal symmetry
Q(k)=—-LU-k)
Then Chern number vanishes!
1
C=—@Q d**Qk) =0
T Jpz

Are all time reversal symmetry preserved
systems trivial?

The answer is no!

Consider this case:

You have two spaces which are related by time
reversal symmetry. And two spaces has
opposite non-trivial Chern number C. and C..

Then we may define a new topological
number Z= C, -C.. This number is not zero
even with time reversal symmetry.



QUANTUM SPIN HALL EFFECT

One example of such a system with time reversal symmetry is the Kane-Mele model.
Kane-Mele model is a doubled copy of Haldane model.

Spin up Spin down

Topological number

Z,=mod(C, —C_2)=1

In total
1.0 L
3 0s Coml | fo, C_= =17 8 os il =
0.0 0.0
0 k, 2 0 209k 27 0 k. 27



QUANTUM SPIN HALL EFFECT

How to realize such QSHE states?

Kane-Mele point out that the imaginary next-nearest hopping can be realized
if we take into account the spin-orbital coupling (SOC) effect. A sad thing is
that the SOC effect in Graphene is negligible.

In 2006, Bernevig, Hughes, Zhang noticed that QSHE can be realized when the
energy bands get inverted by SOC. It can be realized in HgTe QWs.

One example: 1T’-WSe2

— 2
W oo e 15 - N ,//// ™~

Energy (eV)

/dVi4

JE— 30



QUANTUM SPIN HALL EFFECT

One example: 1T’-WSe2 Y y
G X
-Y

1.0 o

WCC
Energy (eV)
N . O = N W A 01 O

0.0 Amecmm

22=1 31



3D TOPOLOGICAL INSULATOR

Extent QSHE to 3D topological insulator (Tl) is not a trivial thing, since there are four
topological numbers named (vo;vivavs) in 3D TI.

Z2 number is calculated in the time-reversal
invariant plane. There are six such planes. Each
of them can give you one Z2 number, which give
us 6 numbers. However not all of them are
independent. Specifically, there is a constraint.

Qks = 0) Q(k = ) = Q(ky = 0) Q(ky = m) = Q(k. = 0) Q(k. = m)

k-
This product is called the strong topological
invariant vy,
O ..""‘ Q(kx — 71-): Q(ky — 7‘-)7 Q(kz — 7")
0

are chosen as v1,v2,vas.
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3D TOPOLOGICAL INSULATOR

Bi>Ses is theoretical predicted and experimental validated as a strong 3D TI.

N

T\
% O'é §ﬁ&g — Band inverted
S 0.5 BN\ \—

Q)
N
T
)
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3D TOPOLOGICAL INSULATOR

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Topological number is
(vo;v1vavs)=(1;000)

20 Ko 0.5 0.0 Ko 0.5



3D TOPOLOGICAL INSULATOR

Bi>Ses is theoretical predicted and experimental validated as a strong 3D TI.

Surface states
Spin texture

0.2 ¢t
01| =00
s = \\ '
Q@ = = /!
y V. : =z
5 /==
C “ \\\ o
L] 01} NN
-0.2 ¢

-0.15-0.1-0.05 0 0.050.10.15

k

X
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CONCLUSION

1. Introduced some preliminaries of Berry phase and topological properties.

2. Introduced Haldane model, Weyl semimetal, QSHE and 3D TI.
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CONCLUSION

There are a lot of physical properties that related to the bulk topology that are not
introduced in this talk due to the time limit, includes

e anomalous Hall conductivity

e orbital magnetization

 spin Hall conductivity

e the Berry curvature dipole

e the kinetic magnetoelectric effect (KME)

e Shift current

Those properties can be calculated using the latest Wannier90 v3.1.0.
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Thank you for your attention!
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