
AiiDA v1.0.0: the best version yet
An unapologetic sales-pitch

Sebastiaan Huber
AiiDA pluginmigrationworkshopMarch 25th 2019



JUSTA TASTEOF SOME THE IMPROVEMENTS

• Improved command line interface

• Homogeneous and consistent interface for verdi
• Tab-completion of parameter and their values
• Easy reuse of components in your own scripts

• Daemon
• Multiple daemons per installation
• Multiple workers per daemon

• Event-based engine
• Clear separation between ‘processes’ and ‘nodes’
• Scalable
• Lightning fast

• Provenance graph implementation that is not broken
• Determine level of granularity
• Simplified querying

2 of 34



JUSTA TASTEOF SOME THE IMPROVEMENTS

• Improved command line interface
• Homogeneous and consistent interface for verdi
• Tab-completion of parameter and their values
• Easy reuse of components in your own scripts

• Daemon
• Multiple daemons per installation
• Multiple workers per daemon

• Event-based engine
• Clear separation between ‘processes’ and ‘nodes’
• Scalable
• Lightning fast

• Provenance graph implementation that is not broken
• Determine level of granularity
• Simplified querying

2 of 34



JUSTA TASTEOF SOME THE IMPROVEMENTS

• Improved command line interface
• Homogeneous and consistent interface for verdi
• Tab-completion of parameter and their values
• Easy reuse of components in your own scripts

• Daemon

• Multiple daemons per installation
• Multiple workers per daemon

• Event-based engine
• Clear separation between ‘processes’ and ‘nodes’
• Scalable
• Lightning fast

• Provenance graph implementation that is not broken
• Determine level of granularity
• Simplified querying

2 of 34



JUSTA TASTEOF SOME THE IMPROVEMENTS

• Improved command line interface
• Homogeneous and consistent interface for verdi
• Tab-completion of parameter and their values
• Easy reuse of components in your own scripts

• Daemon
• Multiple daemons per installation
• Multiple workers per daemon

• Event-based engine
• Clear separation between ‘processes’ and ‘nodes’
• Scalable
• Lightning fast

• Provenance graph implementation that is not broken
• Determine level of granularity
• Simplified querying

2 of 34



JUSTA TASTEOF SOME THE IMPROVEMENTS

• Improved command line interface
• Homogeneous and consistent interface for verdi
• Tab-completion of parameter and their values
• Easy reuse of components in your own scripts

• Daemon
• Multiple daemons per installation
• Multiple workers per daemon

• Event-based engine

• Clear separation between ‘processes’ and ‘nodes’
• Scalable
• Lightning fast

• Provenance graph implementation that is not broken
• Determine level of granularity
• Simplified querying

2 of 34



JUSTA TASTEOF SOME THE IMPROVEMENTS

• Improved command line interface
• Homogeneous and consistent interface for verdi
• Tab-completion of parameter and their values
• Easy reuse of components in your own scripts

• Daemon
• Multiple daemons per installation
• Multiple workers per daemon

• Event-based engine
• Clear separation between ‘processes’ and ‘nodes’
• Scalable
• Lightning fast

• Provenance graph implementation that is not broken
• Determine level of granularity
• Simplified querying

2 of 34



JUSTA TASTEOF SOME THE IMPROVEMENTS

• Improved command line interface
• Homogeneous and consistent interface for verdi
• Tab-completion of parameter and their values
• Easy reuse of components in your own scripts

• Daemon
• Multiple daemons per installation
• Multiple workers per daemon

• Event-based engine
• Clear separation between ‘processes’ and ‘nodes’
• Scalable
• Lightning fast

• Provenance graph implementation that is not broken

• Determine level of granularity
• Simplified querying

2 of 34



JUSTA TASTEOF SOME THE IMPROVEMENTS

• Improved command line interface
• Homogeneous and consistent interface for verdi
• Tab-completion of parameter and their values
• Easy reuse of components in your own scripts

• Daemon
• Multiple daemons per installation
• Multiple workers per daemon

• Event-based engine
• Clear separation between ‘processes’ and ‘nodes’
• Scalable
• Lightning fast

• Provenance graph implementation that is not broken
• Determine level of granularity
• Simplified querying

2 of 34



IMPROVEDCLI

COMMAND LINE INTERFACE

3 of 34



IMPROVEDCLI: HOMOGENEOUSANDCONSISTENTNEW INTERFACE

Reimplemented verdi on top of the click library

• Consistent naming, validation of parameters
• Automatically generated helpmessages and documentation
• Improved tab-completion
• Simplify development through component reuse

4 of 34



IMPROVEDCLI: HOMOGENEOUSANDCONSISTENTNEW INTERFACE

Reimplemented verdi on top of the click library

• Consistent naming, validation of parameters
• Automatically generated helpmessages and documentation
• Improved tab-completion
• Simplify development through component reuse

4 of 34



IMPROVEDCLI: TAB-COMPLETIONOFCOMMANDSANDPARAMETERS

All commands and sub commands are tab completed

But also options are completed...

and not just the options themselves, but their values...

...same goes for arguments

5 of 34



IMPROVEDCLI: TAB-COMPLETIONOFCOMMANDSANDPARAMETERS

All commands and sub commands are tab completed

But also options are completed...

and not just the options themselves, but their values...

...same goes for arguments

5 of 34



IMPROVEDCLI: TAB-COMPLETIONOFCOMMANDSANDPARAMETERS

All commands and sub commands are tab completed

But also options are completed...

and not just the options themselves, but their values...

...same goes for arguments

5 of 34



IMPROVEDCLI: TAB-COMPLETIONOFCOMMANDSANDPARAMETERS

All commands and sub commands are tab completed

But also options are completed...

and not just the options themselves, but their values...

...same goes for arguments

5 of 34



IMPROVEDCLI: REUSABLE

CLI parameter types and pre-built options and parameters can easily be reused

6 of 34



IMPROVEDCLI: REUSABLE

CLI parameter types and pre-built options and parameters can easily be reused

Will automatically detect if arguments aremissing

6 of 34



IMPROVEDCLI: REUSABLE

CLI parameter types and pre-built options and parameters can easily be reused

Will automatically validate values passed

6 of 34



IMPROVEDCLI: REUSABLE

CLI parameter types and pre-built options and parameters can easily be reused

Will automatically parse values into target types

6 of 34



IMPROVEDCLI: REUSABLE

CLI parameter types support various customizations

7 of 34



IMPROVEDCLI: REUSABLE

CLI parameter types support various customizations

Will automatically detect if arguments aremissing

7 of 34



IMPROVEDCLI: REUSABLE

CLI parameter types support various customizations

Will automatically validate values passed

7 of 34



IMPROVEDCLI: REUSABLE

CLI parameter types support various customizations

Will automatically parse values into target types

7 of 34



IMPROVEDCLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

8 of 34



IMPROVEDCLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

Using the ID

8 of 34



IMPROVEDCLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

Using the UUID

8 of 34



IMPROVEDCLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

Partial UUID is supported, but can lead to ambiguity with an ID

8 of 34



IMPROVEDCLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

Include first hyphen to break ambiguity

8 of 34



IMPROVEDCLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

Labels, when hexadecimal, will be potentially incorrectly intepreted as a UUID

8 of 34



IMPROVEDCLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

Exclamationmark serves as ambiguity breaker

8 of 34



DAEMON

DAEMON

9 of 34



DAEMON:MULTIPLEDAEMONS

Originally, each installation had a single daemon

10 of 34



DAEMON:MULTIPLEDAEMONS

Originally, each installation had a single daemon

Now, a single installation has one daemon per profile

10 of 34



DAEMON:MULTIPLEDAEMONS

Originally, each installation had a single daemon

Both can run at the same time in parallel

10 of 34



DAEMON:MULTIPLEWORKERS

By default each daemon has a single worker

11 of 34



DAEMON:MULTIPLEWORKERS

By default each daemon has a single worker

Can easily add and removeworkers that each work independently

11 of 34



ENGINE

ENGINE

12 of 34



ENGINE: EVERYTHING IS A PROCESS

New processes to define calculations andworkflows
Process class Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that runmultiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the workfunction decorator

PROCESS STATE
Active Terminated
Created Killed
Running Excepted
Waiting Finished

PROCESS NODE ATTRIBUTES
Property Meaning
process_state Returns the current process state
exit_status Returns the exit status, or None if not set
exit_message Returns the exit message, or None if not set
is_terminated Returns True if the process was either Killed, Excepted or Finished
is_killed Returns True if the process is Killed
is_excepted Returns True if the process is Excepted
is_finished Returns True if the process is Finished
is_finished_ok Returns True if the process is Finished and the exit_status is equal to zero
is_failed Returns True if the process is Finished and the exit_status is non-zero

13 of 34



ENGINE: EVERYTHING IS A PROCESS

New processes to define calculations andworkflows
Process class Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that runmultiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the workfunction decorator

PROCESS STATE
Active Terminated
Created Killed
Running Excepted
Waiting Finished

PROCESS NODE ATTRIBUTES
Property Meaning
process_state Returns the current process state
exit_status Returns the exit status, or None if not set
exit_message Returns the exit message, or None if not set
is_terminated Returns True if the process was either Killed, Excepted or Finished
is_killed Returns True if the process is Killed
is_excepted Returns True if the process is Excepted
is_finished Returns True if the process is Finished
is_finished_ok Returns True if the process is Finished and the exit_status is equal to zero
is_failed Returns True if the process is Finished and the exit_status is non-zero

13 of 34



ENGINE: EVERYTHING IS A PROCESS

New processes to define calculations andworkflows
Process class Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that runmultiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the workfunction decorator

PROCESS STATE
Active Terminated
Created Killed
Running Excepted
Waiting Finished

PROCESS NODE ATTRIBUTES
Property Meaning
process_state Returns the current process state
exit_status Returns the exit status, or None if not set
exit_message Returns the exit message, or None if not set
is_terminated Returns True if the process was either Killed, Excepted or Finished
is_killed Returns True if the process is Killed
is_excepted Returns True if the process is Excepted
is_finished Returns True if the process is Finished
is_finished_ok Returns True if the process is Finished and the exit_status is equal to zero
is_failed Returns True if the process is Finished and the exit_status is non-zero

13 of 34



ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

14 of 34



ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Submit to the daemon

14 of 34



ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Run blockingly in local interpreter

14 of 34



ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Run variants to get the process node or pk in addition to the result

14 of 34



ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Variants are available as attributes on run launcher requiring only single import

14 of 34



ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Syntactic keyword expansion for big input dictionaries

14 of 34



ENGINE: PROCESS TASKS

What happens whenwe submit a process?

15 of 34



ENGINE: PROCESS TASKS

What happens whenwe submit a process?

1. Store node in database

15 of 34



ENGINE: PROCESS TASKS

What happens whenwe submit a process?

1. Store node in database

2. Send task to RabbitMQ

15 of 34



ENGINE: THE TASKQUEUE

What happens with those tasks?

16 of 34



ENGINE: THE TASKQUEUE

What happens with those tasks?

Task queue

16 of 34



ENGINE: RELYINGONARESILIENTANDROBUST RABBIT

The promise of RabbitMQ
• All tasks are persisted to disk
• Each task is guaranteed to be delivered
• Each task is guaranteed to be sent to only one listener at a time
• Each task is guaranteed to be completed

17 of 34



ENGINE: RELYINGONARESILIENTANDROBUST RABBIT

The promise of RabbitMQ
• All tasks are persisted to disk
• Each task is guaranteed to be delivered
• Each task is guaranteed to be sent to only one listener at a time
• Each task is guaranteed to be completed

This ensures that:
1.We can runmultiple processes in parallel independently

2. Each launched task or "process" will eventually be completed
Nomatter what happens

17 of 34



ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes

18 of 34



ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process list: list active and terminated processes

18 of 34



ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process status: tree representation of call stack

18 of 34



ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process report: complete report of logmessages and scheduler stdout/stderr

18 of 34



ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process pause: pause an active process

verdi process play: resume a paused process

verdi process kill: kill an active process

verdi process pause/play/kill: fails if process is already terminated

19 of 34



ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process pause: pause an active process

verdi process play: resume a paused process

verdi process kill: kill an active process

verdi process pause/play/kill: fails if process is already terminated

19 of 34



ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process pause: pause an active process

verdi process play: resume a paused process

verdi process kill: kill an active process

verdi process pause/play/kill: fails if process is already terminated

19 of 34



ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process pause: pause an active process

verdi process play: resume a paused process

verdi process kill: kill an active process

verdi process pause/play/kill: fails if process is already terminated

19 of 34



ENGINE: ROBUSTNESS

Automatic retry for transport tasks with exponential backoff

Rate limited connections to remote clusters per daemonworker

Rate limited scheduler state queries per daemonworker

20 of 34



ENGINE: ROBUSTNESS

Automatic retry for transport tasks with exponential backoff

Rate limited connections to remote clusters per daemonworker

Rate limited scheduler state queries per daemonworker

20 of 34



ENGINE: ROBUSTNESS

Automatic retry for transport tasks with exponential backoff

Rate limited connections to remote clusters per daemonworker

Rate limited scheduler state queries per daemonworker

20 of 34



PROVENANCEREDESIGN

PROVENANCE REDESIGN

21 of 34



PROVENANCEREDESIGN

Two clearly distinct types of processes
CALCULATIONS

Can create new data
WORKFLOWS
Can call other processes
Can return existing data

22 of 34



PROVENANCEREDESIGN: CALCULATION FUNCTIONS

To transform simple function into process

23 of 34



PROVENANCEREDESIGN: CALCULATION FUNCTIONS

To transform simple function into process

Just apply the calcfunction decorator...

23 of 34



PROVENANCEREDESIGN: CALCULATION FUNCTIONS

To transform simple function into process

Just apply the calcfunction decorator...

... and pass storable data types when calling

23 of 34



PROVENANCEREDESIGN: CALCULATION FUNCTIONS

To transform simple function into process

Just apply the calcfunction decorator...

... and pass storable data types when calling

Provenance is automatically stored in the graph

23 of 34



PROVENANCEREDESIGN:WORK FUNCTIONS

Work function can be used to store logical provenance

24 of 34



PROVENANCEREDESIGN:WORK FUNCTIONS

Work function can be used to store logical provenance

24 of 34



PROVENANCEREDESIGN:WORK FUNCTIONS

Work function can be used to store logical provenance Logical provenance allows to ‘hide’ complexity

24 of 34



PROVENANCEREDESIGN:WORK FUNCTIONS

Work function can be used to store logical provenance Logical provenance allows to ‘hide’ complexity

Or by ignoring it, retrieve the original data provenance

24 of 34



PROVENANCEREDESIGN:WORKCHAINS

Work chains achieve the same but save progress in between steps

25 of 34



PROVENANCEREDESIGN:WORKCHAINS

Work chains achieve the same but save progress in between steps

25 of 34



PROVENANCEREDESIGN:WORKCHAINS

Work chains achieve the same but save progress in between steps

Only difference with work function solution is node type

25 of 34



PROVENANCEREDESIGN: THE RULES

26 of 34



PROVENANCEREDESIGN: THE RULES

26 of 34



PROVENANCEREDESIGN: THE RULES

26 of 34



WHATCHANGED?

WHATCHANGED?

27 of 34



WHATCHANGED?

Summary of backwards-compatible changes curated andmaintained1

JobCalculation replaced by CalcJob: step-by-step guide onwiki2

1https://github.com/aiidateam/aiida_core/wiki/Backward-incompatible-changes-in-1.0.0
2https://github.com/aiidateam/aiida_core/wiki/AiiDA-1.0-plugin-migration-guide

28 of 34

https://github.com/aiidateam/aiida_core/wiki/Backward-incompatible-changes-in-1.0.0
https://github.com/aiidateam/aiida_core/wiki/AiiDA-1.0-plugin-migration-guide


WHATCHANGED?

Summary of backwards-compatible changes curated andmaintained1

JobCalculation replaced by CalcJob: step-by-step guide onwiki2

1https://github.com/aiidateam/aiida_core/wiki/Backward-incompatible-changes-in-1.0.0
2https://github.com/aiidateam/aiida_core/wiki/AiiDA-1.0-plugin-migration-guide

28 of 34

https://github.com/aiidateam/aiida_core/wiki/Backward-incompatible-changes-in-1.0.0
https://github.com/aiidateam/aiida_core/wiki/AiiDA-1.0-plugin-migration-guide


WHATCHANGED:MODULEHIERARCHYANDAPI GUARANTEES

Significant restructuring and renaming of second-level modules

• aiida.utilsmerged into aiida.common
• aiida.scheduler→ aiida.schedulers
• aiida.transport→ aiida.transports
• aiida.work→ aiida.engine

29 of 34



WHATCHANGED:MODULEHIERARCHYANDAPI GUARANTEES

Significant restructuring and renaming of second-level modules

• aiida.utilsmerged into aiida.common
• aiida.scheduler→ aiida.schedulers
• aiida.transport→ aiida.transports
• aiida.work→ aiida.engine

29 of 34



WHATCHANGED:MODULEHIERARCHYANDAPI GUARANTEES

You should only ever (have to) import directly from a second-level package

An explicit list is beingmaintained on the Githubwiki3

3https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules,-classes-and-functions
30 of 34

https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules,-classes-and-functions


WHATCHANGED:MODULEHIERARCHYANDAPI GUARANTEES

You should only ever (have to) import directly from a second-level package

An explicit list is beingmaintained on the Githubwiki3

3https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules,-classes-and-functions
30 of 34

https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules,-classes-and-functions


WHATCHANGED:MODULEHIERARCHYANDAPI GUARANTEES

You should only ever (have to) import directly from a second-level package

An explicit list is beingmaintained on the Githubwiki3

3https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules,-classes-and-functions
30 of 34

https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules,-classes-and-functions


WHATCHANGED: ORM

Constructing new instances

Retrieving an instance from the ‘collection’ through the objects property

Shortcut directly on the class

Getting all instance from the collection

Findingmultiple instances with filters

Deleting an instance

31 of 34



WHATCHANGED: ORM

Constructing new instances

Retrieving an instance from the ‘collection’ through the objects property

Shortcut directly on the class

Getting all instance from the collection

Findingmultiple instances with filters

Deleting an instance

31 of 34



WHATCHANGED: ORM

Constructing new instances

Retrieving an instance from the ‘collection’ through the objects property

Shortcut directly on the class

Getting all instance from the collection

Findingmultiple instances with filters

Deleting an instance

31 of 34



WHATCHANGED: ORM

Constructing new instances

Retrieving an instance from the ‘collection’ through the objects property

Shortcut directly on the class

Getting all instance from the collection

Findingmultiple instances with filters

Deleting an instance

31 of 34



WHATCHANGED: ORM

Constructing new instances

Retrieving an instance from the ‘collection’ through the objects property

Shortcut directly on the class

Getting all instance from the collection

Findingmultiple instances with filters

Deleting an instance

31 of 34



WHATCHANGED: ORM

Constructing new instances

Retrieving an instance from the ‘collection’ through the objects property

Shortcut directly on the class

Getting all instance from the collection

Findingmultiple instances with filters

Deleting an instance

31 of 34



WHATCHANGED: REPOSITORY INTERFACE

In aiida-core<=0.12.*, the file repository of a node lives on the local filesystem
Provided the folder property to get a folder object to interact with it, e.g.:

• node.folder.abspath
• node.folder.get_abs_path(’somefile.txt’)
• node.folder.add_path(’/some/path.txt’, ’destination.txt’)

In the future, repository no longer necessarily lives on local filesystem
• Remote filesystem
• Object store

Additionally, files may potentially be packed in archives for efficiency reasons
• Tar archive
• Zip compressed

In preparation, node repository interface has been significantly changed
Now to interact, go through the node.repository property, which hasmethods to:

• List objects: list_object_names, list_objects
• Get objects: get_object, get_object_content, open
• Put objects: put_object_from_tree,put_object_from_file,put_object_from_filelike
• Delete objects: delete_object

32 of 34



WHATCHANGED: REPOSITORY INTERFACE

In aiida-core<=0.12.*, the file repository of a node lives on the local filesystem
Provided the folder property to get a folder object to interact with it, e.g.:

• node.folder.abspath
• node.folder.get_abs_path(’somefile.txt’)
• node.folder.add_path(’/some/path.txt’, ’destination.txt’)

In the future, repository no longer necessarily lives on local filesystem
• Remote filesystem
• Object store

Additionally, files may potentially be packed in archives for efficiency reasons
• Tar archive
• Zip compressed

In preparation, node repository interface has been significantly changed
Now to interact, go through the node.repository property, which hasmethods to:

• List objects: list_object_names, list_objects
• Get objects: get_object, get_object_content, open
• Put objects: put_object_from_tree,put_object_from_file,put_object_from_filelike
• Delete objects: delete_object

32 of 34



WHATCHANGED: REPOSITORY INTERFACE

In aiida-core<=0.12.*, the file repository of a node lives on the local filesystem
Provided the folder property to get a folder object to interact with it, e.g.:

• node.folder.abspath
• node.folder.get_abs_path(’somefile.txt’)
• node.folder.add_path(’/some/path.txt’, ’destination.txt’)

In the future, repository no longer necessarily lives on local filesystem
• Remote filesystem
• Object store

Additionally, files may potentially be packed in archives for efficiency reasons
• Tar archive
• Zip compressed

In preparation, node repository interface has been significantly changed
Now to interact, go through the node.repository property, which hasmethods to:

• List objects: list_object_names, list_objects
• Get objects: get_object, get_object_content, open
• Put objects: put_object_from_tree,put_object_from_file,put_object_from_filelike
• Delete objects: delete_object

32 of 34



WHATCHANGED: REPOSITORY INTERFACE

In aiida-core<=0.12.*, the file repository of a node lives on the local filesystem
Provided the folder property to get a folder object to interact with it, e.g.:

• node.folder.abspath
• node.folder.get_abs_path(’somefile.txt’)
• node.folder.add_path(’/some/path.txt’, ’destination.txt’)

In the future, repository no longer necessarily lives on local filesystem
• Remote filesystem
• Object store

Additionally, files may potentially be packed in archives for efficiency reasons
• Tar archive
• Zip compressed

In preparation, node repository interface has been significantly changed
Now to interact, go through the node.repository property, which hasmethods to:

• List objects: list_object_names, list_objects
• Get objects: get_object, get_object_content, open
• Put objects: put_object_from_tree,put_object_from_file,put_object_from_filelike
• Delete objects: delete_object

32 of 34



ACKNOWLEDGMENTS

Casper
Andersen
(EPFL)

Marco
Borelli
(EPFL)

Sebastiaan
Huber
(EPFL)

Leonid
Kahle
(EPFL)

Nicola
Marzari
(EPFL)

Martin
Muhrin
(EPFL)

Elsa
Passaro
(EPFL)

Giovanni
Pizzi
(EPFL)

Aliaksandr
Yakutovich
(EPFL)

Snehal
Waychal
(EPFL)

Spyros
Zoupanos
(EPFL)

Martin Uhrin, Rico Häuselmann, NicolasMounet, Andrea Cepellotti, Fernando Gargiulo, Riccardo Sabatini, Rico Häuselmann, Valentin Bersier, Jocelyn Boullier, Jens Bröder, Marco
Dorigo, Marco Gibertini, Dominik Gresch Eric Hontz, Daniel Marchand , TizianoMüller, Phillippe Schwaller, Ivano E. Castelli, Ian Lee, Gianluca Prandini, Jianxing Huang, Antimo
Marrazzo, Nicola Varini, Mario Zic, Vladimir Dikan,Michael Atambo, Ole Schütt, Y.-W. Fang, Philipp Rüßmann, Bonan Zhu, Andreas Stamminger, Keija Cui, Daniel Hollas, Jianxing Huang,
Espen Flage-Larsen

33 of 34



FIN

FIN

34 of 34


