AiiDA v1.0.0: the best version yet

An unapologetic sales-pitch

Sebastiaan Huber

AiiDA plugin migration workshop March 25“'I 2019

9

sAIIDA

o

JUST ATASTE OF SOME THE IMPROVEMENTS

» Improved command line interface

¢5AIIDA -

JUST ATASTE OF SOME THE IMPROVEMENTS

» Improved command line interface

* Homogeneous and consistent interface for verdi
* Tab-completion of parameter and their values
* Easy reuse of components in your own scripts

¢5AIIDA -

JUST ATASTE OF SOME THE IMPROVEMENTS

» Improved command line interface

* Homogeneous and consistent interface for verdi
* Tab-completion of parameter and their values
* Easy reuse of components in your own scripts

+ Daemon

OOOA”DA 20f34

JUST ATASTE OF SOME THE IMPROVEMENTS

» Improved command line interface

* Homogeneous and consistent interface for verdi
* Tab-completion of parameter and their values
* Easy reuse of components in your own scripts

+ Daemon

* Multiple daemons per installation
* Multiple workers per daemon

OOOA”DA 20f34

JUST ATASTE OF SOME THE IMPROVEMENTS

» Improved command line interface

* Homogeneous and consistent interface for verdi
* Tab-completion of parameter and their values
* Easy reuse of components in your own scripts

+ Daemon

* Multiple daemons per installation
* Multiple workers per daemon

» Event-based engine

OOOA”DA 20f34

JUST ATASTE OF SOME THE IMPROVEMENTS

» Improved command line interface

* Homogeneous and consistent interface for verdi
* Tab-completion of parameter and their values
* Easy reuse of components in your own scripts

+ Daemon

* Multiple daemons per installation
* Multiple workers per daemon

» Event-based engine

¢ Clear separation between ‘processes’ and ‘nodes’
* Scalable
¢ Lightning fast

OOOA”DA 20f34

JUST ATASTE OF SOME THE IMPROVEMENTS

» Improved command line interface

* Homogeneous and consistent interface for verdi
* Tab-completion of parameter and their values
* Easy reuse of components in your own scripts

+ Daemon

* Multiple daemons per installation
* Multiple workers per daemon

» Event-based engine

¢ Clear separation between ‘processes’ and ‘nodes’
* Scalable
¢ Lightning fast

» Provenance graph implementation that is not broken

OOOA”DA 20f34

JUST ATASTE OF SOME THE IMPROVEMENTS

» Improved command line interface

* Homogeneous and consistent interface for verdi
* Tab-completion of parameter and their values
* Easy reuse of components in your own scripts

+ Daemon

* Multiple daemons per installation
* Multiple workers per daemon

» Event-based engine

¢ Clear separation between ‘processes’ and ‘nodes’
* Scalable
¢ Lightning fast

» Provenance graph implementation that is not broken

* Determine level of granularity
* Simplified querying

OOOA”DA 20f34

IMPROVED CLI

¢5AIIDA

COMMAND LINE INTERFACE

IMPROVED CLI: HOMOGENEOUS AND CONSISTENT NEW INTERFACE

Reimplemented verdi ontop of the c1ick library

that ar till running.

r multip

¢5AIIDA

IMPROVED CLI: HOMOGENEOUS AND CONSISTENT NEW INTERFACE

Reimplemented verdi ontop of the c1ick library

L running.

Consistent naming, validation of parameters
Automatically generated help messages and documentation
Improved tab-completion

Simplify development through component reuse

¢5AIIDA

IMPROVED CLI: TAB-COMPLETION OF COMMANDS AND PARAMETERS

All commands and sub commands are tab completed

¢5AIIDA

IMPROVED CLI: TAB-COMPLETION OF COMMANDS AND PARAMETERS

All commands and sub commands are tab completed

a_dev) sph
lis

uber@theo
t

(aiida_dev) sphuber@theos:~$
--help -p --pr

¢5AIIDA

IMPROVED CLI: TAB-COMPLETION OF COMMANDS AND PARAMETERS

All commands and sub commands are tab completed

a_dev) sphuber@theo
list

(aiida_dev) sphuber@theo

--hel -p

) sphuber@theos:~$ verdi

¢5AIIDA

IMPROVED CLI: TAB-COMPLETION OF COMMANDS AND PARAMETERS

All commands and sub commands are tab completed

ev) sphuber@theo
list

ev) sphuber@theo
-p --profi

¢5AIIDA

IMPROVED CLI: REUSABLE

CLI parameter types and pre-built options and parameters can easily be reused

#!/usr/bin/env python
-*- coding: UtT-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments.NODE(required=True)
@decorators.with_dbenv()
def cli(node):
click.echo('Received node<{}>'.Tormat(node.uuid}))

if __name_ == '__main__':
cli()

0°°AiiDA 60f34

IMPROVED CLI: REUSABLE

CLI parameter types and pre-built options and parameters can easily be reused

#!/usr/bin/env python
-*- coding: UtT-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments.NODE(required=True)
@decorators.with_dbenv()
def cli(node):
click.echo('Received node<{}>'.Tormat(node.uuid}))

if __name_ == '__main__':
cli()

Will automatically detect if arguments are missing

$./cli.py
Usage: cli.py [OPTIONS] NODE
Try "cli.py --help" for help

Error: Missing argument "NODE".

o°oAiiDA 60f34

IMPROVED CLI: REUSABLE

CLI parameter types and pre-built options and parameters can easily be reused

#!/usr/bin/env python
-*- coding: UtT-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators
@click.command()
@arguments.NODE(required=True)
@decorators.with_dbenv()
def cli(node):

click.echo('Received node<{}>'.Tormat(node.uuid}))

if __name_ == '__main__':
cli()

Will automatically validate values passed

$./cli.py 1000
Usage: cli.py [OPTIONS] NODE

Error: Invalid value for "NODE": no Node Tound with ID<1000>: No result was found

o°oAiiDA 60f34

IMPROVED CLI: REUSABLE

CLI parameter types and pre-built options and parameters can easily be reused

#!/usr/bin/env python
-*- coding: UtT-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments.NODE(required=True)
@decorators.with_dbenv()
def cli(node):
click.echo('Received node<{}>'.Tormat(node.uuid}))

if __name_ == '__main__':
cli()

Will automatically parse values into target types

$./cli.py 160
Received node<77957726-4744-47be-b897-581e8T50d967>

o°oAiiDA 60f34

IMPROVED CLI: REUSABLE

CLI parameter types support various customizations

#1/usr/binsenv python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import options, types
from aiida.cmdline.utils import decorators

@elick.command()
@options.CODE(required=True, type=types.CodeParamType(entry point='arithmetic.add'),
help='Code configured to run ‘arithmetic.add” calculation.')
@decorators.with_dbenv()
def cli(code):
click.echo('Received code<{}>'.format(code.full_label))

if __name__ == '__main_ ':
cli()

OooAiiDA 70f34

IMPROVED CLI: REUSABLE

CLI parameter types support various customizations

#1/usr/binsenv python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import options, types
from aiida.cmdline.utils import decorators

@elick.command()
@options.CODE(required=True, type=types.CodeParamType(entry point='arithmetic.add'),
help='Code configured to run ‘arithmetic.add” calculation.')
@decorators.with_dbenv()
def cli(code):
click.echo('Received code<{}>'.format(code.full_label))

if __name__ == '__main_ ':
cli()

Will automatically detect if arguments are missing

$./cli.py
Usage: cli.py [OPTIONS]
Try "cli.py --help" for help.

Error: Missing option *-X" / "--code".

0°°AiiDA 70f34

IMPROVED CLI: REUSABLE

CLI parameter types support various customizations

#1/usr/binsenv python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import options, types
from aiida.cmdline.utils import decorators

@elick.command()
@options.CODE(required=True, type=types.CodeParamType(entry point='arithmetic.add'),
help='Code configured to run ‘arithmetic.add” calculation.')
@decorators.with_dbenv()
def cli(code):
click.echo('Received code<{}>'.format(code.full_label))

if __name__ == '__main_ ':
cli()

Will automatically validate values passed

$./cli.py doubler@localhost
Usage: cli.py [OPTIONS]

Error: Invalid value for "-X" / "--code": the retrieved Code<i> has
plugin type "templatereplacer" while "arithmetic.add" is required

0°°AiiDA 70of34

IMPROVED CLI: REUSABLE

CLI parameter types support various customizations

#1/usr/binsenv python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import options, types
from aiida.cmdline.utils import decorators

@elick.command()
@options.CODE(required=True, type=types.CodeParamType(entry point='arithmetic.add'),
help='Code configured to run ‘arithmetic.add” calculation.')
@decorators.with_dbenv()
def cli(code):
click.echo('Received code<{}>'.format(code.full_label))

if __name__ == '__main_ ':
cli()

Will automatically parse values into target types

$./cli.py add@ilocalhost
Received code<add@localhost>

0°°AiiDA 70of34

IMPROVED CLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

#!/usr/bin/env python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments. CODE(required=True)
@decorators.with_dbenv()
def cli(code):
click.echo('Received code: {}'.Tormat(code))

if _name_ == '__main__':
elif)

o°oAiiDA 80f34

IMPROVED CLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

#!/usr/bin/env python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments. CODE(required=True)
@decorators.with_dbenv()
def cli(code):
click.echo('Received code: {}'.Tormat(code))

if _name_ == '__main__':
elif)

Using the 1D

$./cli.py 15
Received code: Remote code 'add' on localhost, pk: 15, wuid: 222509c1-9fa@-479d-95f2-86d839392696

o°oAiiDA 80f34

IMPROVED CLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

#!/usr/bin/env python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments. CODE(required=True)
@decorators.with_dbenv()
def cli(code):
click.echo('Received code: {}'.Tormat(code))

if _name_ == '__main__':
elif)

Using the UUID

$./cli.py 222509c1-9Ta@-479d-9572-86d839392696
Received code: Remote code 'add' on localhost, pk: 15, wuid: 222509c1-9fa@-479d-95f2-86d839392696

o°oAiiDA 80f34

IMPROVED CLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

#!/usr/bin/env python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments. CODE(required=True)
@decorators.with_dbenv()
def cli(code):
click.echo('Received code: {}'.format(code))

if _name_ == '__main__':
elif)

Partial UUID is supported, but can lead to ambiguity with an 1D

$./cli.py 2225
Usage: cli.py [OPTIONS] CODE

Error: Invalid value for "CODE": no Code found with ID<add>: No result was found

o°oAiiDA 80f34

IMPROVED CLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

#!/usr/bin/env python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments. CODE(required=True)
@decorators.with_dbenv()
def cli(code):
click.echo('Received code: {}'.Tormat(code))

if _name_ == '__main__':
elif)

Include first hyphen to break ambiguity

$./cli.py 2225089c1-
Received code: Remote code 'add' on localhost, pk: 15, uuid: 222509c1-9fa@-479d-9572-86d839392696

o°oAiiDA 80f34

IMPROVED CLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

#!/usr/bin/env python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments. CODE(required=True)
@decorators.with_dbenv()
def cli(code):
click.echo('Received code: {}'.format(code))

if _name_ == '__main__':
elif)

Labels, when hexadecimal, will be potentially incorrectly intepreted as a uUu1ID

$./cli.py add
Usage: cli.py [OPTIONS] CODE

Error: Invalid value for "CODE": no Code found with UUID<add>: Mo result was found

o°oAiiDA 80f34

IMPROVED CLI: CONSISTENCY

All ORM ‘identifiers’ support ID, UUID and LABEL
Type interpreted consecutively in that order until successful or all fail

#!/usr/bin/env python
-*- coding: utf-8 -*-
import click

from aiida.cmdline.params import arguments
from aiida.cmdline.utils import decorators

@click.command()
@arguments. CODE(required=True)
@decorators.with_dbenv()
def cli(code):
click.echo('Received code: {}'.Tormat(code))

if _name_ == '__main__':
elif)

Exclamation mark serves as ambiguity breaker

$./cli.py add!
Received code: Remote code 'add' on localhost, pk: 15, wuid: 222509c1-9fa@-479d-95f2-86d83939269

o°oAiiDA 80f34

DAEMON

DAEMON

¢5AIIDA

DAEMON: MULTIPLE DAEMONS

Originally, each installation had a single daemon

¢5AIIDA

DAEMON: MULTIPLE DAEMONS

Originally, each installation had a single daemon

¢5AIIDA

DAEMON: MULTIPLE DAEMONS

Originally, each installation had a single daemon

¢5AIIDA

DAEMON: MULTIPLE WORKERS

By default each daemon has a single worker

ev) sphuber@theo
django
runnin

PID MEM

¢5AIIDA

DAEMON: MULTIPLE WORKERS

By default each daemon has a single worker
sphuber@theos:

PID

sphuber@theos:

sphuber@theos:
django
runni

¢5AIIDA

ENGINE

ENGINE

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

New processes to define calculations and workflows

Process class

Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that run multiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the work funct ion decorator

¢5AIIDA

130f 34

ENGINE: EVERYTHING IS A PROCESS

New processes to define calculations and workflows

Process class

Node class

Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that run multiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the work funct ion decorator
PROCESS STATE
Active Terminated
Created Killed
Running Excepted
Waiting Finished

¢5AIIDA

130f 34

ENGINE: EVERYTHING IS A PROCESS

New processes to define calculations and workflows

Process class Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that run multiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the work funct ion decorator

PROCESS STATE PROCESS NODE ATTRIBUTES

Active Terminated Property Meaning

Created Killed process_state Returns the current process state

Running Excepted exit_status Returns the exit status, or None if not set
Waiting Finished exit_message Returns the exit message, or None if not set

¢5AIDA

is_terminated
is_killed
is_excepted
is_finished
is_finished_ok
is_failed

Returns True if the process was either Killed, Exceptedor Finished
Returns True if the processis Killed

Returns True if the process is Excepted

Returns True if the processis Finished

Returns True if the processis Finished and the exit_statusisequal to zero
Returns True if the processis Finished and the exit_status is non-zero

130f 34

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run
run_get_node
run_get_pk
submit

¢5AIIDA

Run blockingly and return result

Run blockingly and return result + node
Run blockingly and return result + pk
Submit to daemon and return node

14 0f 34

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Submit to the daemon

from aiida import orm
from aiida.engine import submit

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')
node = submit(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

o°oAiiDA 14 0f 34

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Run blockingly in local interpreter

from aiida import orm
from aiida.engine import run

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')
result = run{ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

oﬁoAiiDA 14 0f 34

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Run variants to get the process node or pk in addition to the result

from aiida import orm
from aiida.engine import run_get_node, run_get_pk

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')

result, node = run_get_node(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))
result, pk = run_get_pk(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

l’POAiiDA 14 0f 34

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Variants are available as attributes on run launcher requiring only single import

from aiida import orm
from aiida.engine import run

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')

result = run{ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

result, node = run.get_node(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))
result, pk = run.get_pk(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

¢5AIDA

14 0f 34

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Syntactic keyword expansion for big input dictionaries

from aiida import orm
from aiida.engine import submit

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')
inputs = {

'x': orm.Int(1),

'y': orm.Int(2)

node = submit(ArithmeticAddCalculation, **inputs)

oﬁoAiiDA 14 0f 34

ENGINE: PROCESS TASKS

What happens when we submit a process?

o°oAiiDA 150f 34

ENGINE: PROCESS TASKS

What happens when we submit a process?

1. Store node in database

¢5AIIDA -

ENGINE: PROCESS TASKS

What happens when we submit a process?

1. Store node in database

2. Send task to RabbitMQ

Dl N |-

oﬁoAiiDA 150f 34

ENGINE: THE TASK QUEUE

What happens with those tasks?

o°oAiiDA 16 of 34

ENGINE: THE TASK QUEUE

What happens with those tasks?

Task queue

5 u

oooAiiDA 16 0f 34

ENGINE: RELYING ON A RESILIENT AND ROBUST RABBIT

The promise of RabbitMQ

All tasks are persisted to disk

Each task is guaranteed to be delivered

» Eachtask is guaranteed to be sent to only one listener at a time

Each task is guaranteed to be completed

¢5AIDA

17 of 34

ENGINE: RELYING ON A RESILIENT AND ROBUST RABBIT

The promise of RabbitMQ

All tasks are persisted to disk

Each task is guaranteed to be delivered

» Eachtask is guaranteed to be sent to only one listener at a time

Each task is guaranteed to be completed

This ensures that:

1. We can run multiple processes in parallel independently

2. Each launched task or "process" will eventually be completed

No matter what happens

¢5AIDA

17 of 34

ENGINE: EVERYTHING IS A PROCESS

verdi process:yourone-stop-shop for inspecting and interacting with processes

oﬁoAiiDA 180f 34

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process list:listactive andterminated processes

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process status:treerepresentation of call stack

1
ISHED]

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process report:complete report of log messages and scheduler stdout/stderr

ul on] : P

iorkchain con

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

verdi process:your one-stop-shop for inspecting and interacting with processes

verdi process pause: pause an active process

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes

verdi process pause: pause an active process

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process pause: pause an active process

heduled pa

verdi process play:resume apaused process

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process pause: pause an active process

¢5AIIDA

ENGINE: ROBUSTNESS

Automatic retry for transport tasks with exponential backoff

¢5AIIDA

ENGINE: ROBUSTNESS

Automatic retry for transport tasks with exponential backoff

¢5AIIDA

ENGINE: ROBUSTNESS

Automatic retry for transport tasks with exponential backoff

t_minimum_j

5 pute t minimum j

SATDA

PROVENANCE REDESIGN

¢5AIIDA

PROVENANCE REDESIGN

PROVENANCE REDESIGN

Two clearly distinct types of processes

CALCULATIONS WORKFLOWS

Can create new data Can call other processes

Can return existing data

¢5AIIDA ot

PROVENANCE REDESIGN: CALCULATION FUNCTIONS

To transform simple function into process

def add(x, y):
return x + y

def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

¢5AIIDA -

PROVENANCE REDESIGN: CALCULATION FUNCTIONS

To transform simple function into process

def add(x, y):
return x + y

def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

Just apply the calcfunction decorator...

from aiida.engine import calcfunction
@calefunction
def add(x, y):
return x +y
gealefunction
def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

¢5AIIDA -

PROVENANCE REDESIGN: CALCULATION FUNCTIONS

To transform simple function into process ... and pass storable data types when calling
def add(x, y): from aiida.engine import calcfunction
return x +y from aiida.orm import Int
def multiply(x, y): @calcfunction
return x * y def add(x, y):

return x + y
result = multiply(add(1, 2), 3)
@calefunction
def multiply(x, y):
return x * y

result = multiply(add(Int(1), Int(2)), Int(3))

Just apply the calcfunction decorator...

from aiida.engine import calcfunction
@calefunction
def add(x, y):
return x +y
gealefunction
def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

¢5AIIDA -

PROVENANCE REDESIGN: CALCULATION FUNCTIONS

To transform simple function into process ... and pass storable data types when calling

def add(x, y):

from aiida. engine import calcfunction
return x + y

from aiida.orm import Int

def multiply(x, y): @calcfunction
return x * y def add(x, y):

return x + y
result = multiply(add(1, 2), 3)

@calefunction
def multiply(x, y):
return x * y

result = multiply(add(Int(1), Int(2)), Int(3))

Just apply the calcfunction decorator... Provenance is automatically stored in the graph
from aiida.engine import calcfunction DX1 63
@icalefunction \ \
def add(x, y):
return x + y y SuM RESULT
@calcfunction D2 CREATE D4 CREATE Ds

def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

¢5AIDA

230f 34

PROVENANCE REDESIGN: WORK FUNCTIONS

Work function can be used to store logical provenance

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

@calcfunction
def add(x, y):
return Int(x + y)

@calcfunction
def multiply(x, y):
return Int(x * y)

@workfunction

def add_and_multiply(x, y, z):
sum = add(x,)
product = multiply(sum, z)
return product

result = add_and_multiply(Int(1), Int(2), Int(3))

¢5AIIDA

240f 34

PROVENANCE REDESIGN: WORK FUNCTIONS

Work function can be used to store logical provenance

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

@calcfunction
def add(x, y):
return Int(x + y)

@calcfunction
def multiply(x, y):
return Int(x * y)

@workfunction

def add_and_multiply(x, y, z):
sum = add(x,)
product = multiply(sum, z)
return product

result = add_and_multiply(Int(1), Int(2), Int(3))

240f 34

PROVENANCE REDESIGN: WORK FUNCTIONS

Work function can be used to store logical provenance Logical provenance allows to ‘hide’ complexity

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

@calcfunction
def add(x, y):

return Int(x + y) T
TS RETURN
@Bcalcfunction Y
def multiply(x, y): -

return Int(x * y)

@workfunction

def add_and_multiply(x, y, z):
sum = add(x, y)
product = multiply(sum, z)
return product

result = add_and_multiply(Int(1), Int(2), Int(3))

24 0f 34

PROVENANCE REDESIGN: WORK FUNCTIONS

Work function can be used to store logical provenance

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

@calcfunction
def add(x, y):
return Int(x + y)

@Bcalcfunction
def multiply(x, y):
return Int(x * y)

@workfunction

def add_and_multiply(x, y, z):
sum = add(x, y)
product = multiply(sum, z)
return product

result = add_and_multiply(Int(1), Int(2), Int(3))

Logical provenance allows to ‘hide’ complexity

RETURN

Or by ignoring it, retrieve the original data provenance

s
e ‘ Acm ‘

24 0f 34

PROVENANCE REDESIGN: WORK CHAINS

Work chains achieve the same but save progress in between steps

from aiida.engine import WorkChain, calcfunction
from aiida.orm import Int

Gcalefunction
def add(x, y):
return Int(x + y)

@calefunction
def multiply(x, y):
return Int(x * y)

class AddAndMultiplyWorkChain(WorkChain):

@classmethod
def define(cls, spec):
super(AddAndMultiplyWorkChain, cls).define(spec)
spec.input('x")
spec.input('y')
spec.input('z')
spec.outline(
cls.add,
cls.multiply,
cls.results,

spec.output('result')

def add(self):
self.ctx.sum = add(self.inputs.x, self.inputs.y)

def multiply(self):
self.ctx.product = multiply(self.ctx.sum, self.inputs.z)

def results(self):
self.out('result’, self.ctx.product)

oﬁoAiiDA 250f 34

PROVENANCE REDESIGN: WORK CHAINS

Work chains achieve the same but save progress in between steps

from aiida.engine import WorkChain, calcfunction
from aiida.orm import Int y

Gcalefunction
def add(x, y):
return Int(x + y)

@calefunction
def multiply(x, y):
return Int(x * y)

class AddAndMultiplyWorkChain(WorkChain): D
3

@classmethod
def define(cls, spec):
super(AddAndMultiplyWorkChain, cls).define(spec)
spec.input('x")
spec.input('y')
spec.input('z')
spec.outline(
cls.add,
cls.multiply,
cls.results,

spec.output('result')

def add(self):
self.ctx.sum = add(self.inputs.x, self.inputs.y)

def multiply(self):
self.ctx.product = multiply(self.ctx.sum, self.inputs.z)

def results(self):
self.out('result’, self.ctx.product)

oooAiiDA 250f34

PROVENANCE REDESIGN: WORK CHAINS

Work chains achieve the same but save progress in between steps

from aiida.engine import WorkChain, calcfunction
from aiida.orm import Int

Gcalefunction
def add(x, y):
return Int(x + y)

@calefunction
def multiply(x, y):
return Int(x * y)

class AddAndMultiplyWorkChain(WorkChain):

@classmethod
def define(cls, spec):
super(AddAndMultiplyWorkChain, cls).define(spec)
spec.input('x")
i) Only difference with work function solution is node type
spec.outLine(
cls.add,
cls.multiply,
cls.results,

\,
NN
“\\

spec.output('result')

def add(self):
self.ctx.sum = add(self.inputs.x, self.inputs.y)

def multiply(self):
self.ctx.product = multiply(self.ctx.sum, self.inputs.z)

def results(self):
self.out('result’, self.ctx.product)

oooAiiDA 250f34

PROVENANCE REDESIGN: THE RULES

s

B>

CalcJobNode A CalcFunctionNode
‘ WorkChainNode v WorkFunctionNode

Data

AiiDA

Provenance Graph

CALL_WORK

e AL cae ™ RETURN

el ..
' CREATE.
INPUT cALC " " s

.

26 0f 34

PROVENANCE REDESIGN: THE RULES

ORM Hierarchy

Node

¢5AIDA

26 0f 34

PROVENANCE REDESIGN: THE RULES

ORM Hierarchy

Node

[—] =N
B B e
.
Link Hierarchy

- — - - — - - . -

INPUT \ WORK

RETURN

oooAiiDA 260f 34

WHAT CHANGED?

¢5AIIDA

WHAT CHANGED?

WHAT CHANGED?

Summary of backwards-compatible changes curated and maintained?

Backward incompatible changes in 1.0.0

Leopold Talirz edited this page 13 days ago - 13 revisions

This is a (sub set of) the backward incompatible changes between aiida-core==¢.* and aiida-
core==1.0.0 .

® See the AiiDA 1.0 plugin migration guide for instructions on how to migrate plugins
* Forallist of added features and improvements, please refer to the CHANGELOG.md .

Important! f you are upgrading from a previous version of AiiDA installed from the git repository with
pip install -e .,rememberto delete all the .pyc files (find .

-name "*.pyc" -delete) oryou
will get a /ot of weird errors!

Thtt tps://github.com/aiidateam/aiida_core/wiki/Backward-incompatible-changes-in-1.0.0
?l’x tps://github.com/aiidateam/aiida_core/wiki/AiiDA-1.0-plugin-migration-guide
SSAIDA

280f 34

https://github.com/aiidateam/aiida_core/wiki/Backward-incompatible-changes-in-1.0.0
https://github.com/aiidateam/aiida_core/wiki/AiiDA-1.0-plugin-migration-guide

WHAT CHANGED?

Summary of backwards-compatible changes curated and maintained?

Backward incompatible changes in 1.0.0

Leopold Talirz edited this page 13 days ago - 13 revisions
This is a (sub set of) the backward incompatible changes between aiida-core==¢.* and aiida-
core==1.0.0 .

® See the AiiDA 1.0 plugin migration guide for instructions on how to migrate plugins
* Forallist of added features and improvements, please refer to the CHANGELOG.md .

Important! If you are upgrading from a previous version of AiiDA installed from the git repository with

pip install -e .,rememberto delete all the .pyc files (find . -name "*.pyc" -delete)oryou
will get a /ot of weird errors!

JobCalculation replaced by CalcJob: step-by-step guide on wiki2
AiiDA 1.0 plugin migration guide
Sebastiaan Huber edited this page 4 minutes ago - 15 revisions
Table of contents
* Migrating imports

® Migrating JobCalculation to Calclob
® Migrating the Parser

Thtt tps://github.com/aiidateam/aiida_core/wiki/Backward-incompatible-changes-in-1.0.0
2nte tps://github.com/aiidateam/aiida_core/wiki/AiiDA-1.0-plugin-migration-guide

SSAIDA

280f 34

https://github.com/aiidateam/aiida_core/wiki/Backward-incompatible-changes-in-1.0.0
https://github.com/aiidateam/aiida_core/wiki/AiiDA-1.0-plugin-migration-guide

WHAT CHANGED: MODULE HIERARCHY AND API GUARANTEES

Significant restructuring and renaming of second-level modules

i backends
i calculations
s cmdline

I common
i engine

i manage
morm

i parsers

i plugins

i restapi

i schedulers
i sphinxext
I tools

I transports.

) settings.py

¢5AIDA

Release 'v1.0.0b1" (#2593)
Release 'v1.0.0b1" (#2593)

Merge branch 'master’ of github.com:aiidateam/aiida_core into merge_m
Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Merge branch 'master’ of github.com:aiidateam/aiida_core into merge_m
Release 'v1.0.0b1" (#2593)

Simplity imports from the *aiida.orm’” (#2534)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Formalizing importable resources on second level modules (#2528)

hours ago

hours ago

aday ago

hours ago

hours ago

hours ago

hours ago

hours ago

hours ago

aday ago

hours ago

15 days ago

hours ago

hours ago

hours ago

16 days ago

290f 34

WHAT CHANGED: MODULE HIERARCHY AND API GUARANTEES

Significant restructuring and renaming of second-level modules

i backends
i calculations
s cmdline

I common
i engine

i manage
morm

i parsers

i plugins

i restapi

i schedulers
i sphinxext
I tools

I transports.

_init__py

) settings.py

° aiida.utils mergedintoaiida.common
¢ aiida.scheduler —aiida.schedulers
e aiida.transport —+aiida.transports

Release 'v1.0.0b1" (#2593)
Release 'v1.0.0b1" (#2593)

Merge branch 'master’ of github.com:aiidateam/aiida_core into merge_m
Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Merge branch 'master’ of github.com:aiidateam/aiida_core into merge_m
Release 'v1.0.0b1" (#2593)

Simplity imports from the *aiida.orm’” (#2534)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Release 'v1.0.0b1" (#2593)

Formalizing importable resources on second level modules (#2528)

e aiida.work —aiida.engine

¢5AIDA

21 hours ago
21 hours ago

aday ago
21 hours ago
21 hours ago
21 hours ago
21 hours ago
21 hours ago
21 hours ago

aday ago
21 hours ago
15 days ago
21 hours ago
21 hours ago
21 hours ago

16 days ago

290f 34

WHAT CHANGED: MODULE HIERARCHY AND API GUARANTEES

You should only ever (have to) import directly from a second-level package

from aiida.orm import Data
data = Data()

https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules, -~classes—-and-functions

3
o°oAiiDA 300f 34

https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules,-classes-and-functions

WHAT CHANGED: MODULE HIERARCHY AND API GUARANTEES

You should only ever (have to) import directly from a second-level package

from aiida.orm import Data
data = Data()

from aiida import orm
data = orm.Data()

o A?l’xttps://github.com/aiidateam/aiidafcore/wiki/AiiDA—public—modules,—classes—and—functions
oo All

300f 34

https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules,-classes-and-functions

WHAT CHANGED: MODULE HIERARCHY AND API GUARANTEES

Q
(75>

You should only ever (have to) import directly from a second-level package

from aiida.orm import Data
data = Data()

from aiida import orm
data = orm.Data()

An explicit list is being maintained on the Github wiki®

AiiDA public modules, classes and functions

Sebastiaan Huber edited this page 8 days ago - 1 revision

The main package of aiida-core iscalled aiida, which contains various sub-packages that we
refer to as "second-level packages”. These second level packages can have further nested
hierarchies. Certain resources (modules, classes, functions and variables) within these packages
are intended for internal use, whereas others are meant to be used by users of the aiida-core
package. To make it easier for users to locate these resources that are intended for external use, as
well as to distinguish them from internal resources that are not supposed to be used, they are
exposed directly on the second-level package. This means that any resource that can be directly
imported from a second-level package, is intended for external use. Below we provide a list of the
resources per second-level package that are exposed in this way. If a module is mentioned, then all
the resources defined inits __all areincluded.

3
|

A

hitps://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules, ~classes-and-functions
|

300f 34

https://github.com/aiidateam/aiida_core/wiki/AiiDA-public-modules,-classes-and-functions

WHAT CHANGED: ORM

Constructing new instances

from aiida import orm
computer = orm.Computer(name='localhost’, hostname='localhost')

oﬁoAiiDA 310f34

WHAT CHANGED: ORM

Constructing new instances

from aiida import orm
computer = orm.Computer(name='localhost’, hostname='localhost')

Retrieving an instance from the ‘collection’ through the object s property

from aiida import orm
computer = orm.Computer.objects.get (name='localnost')

oﬁoAiiDA 310f34

WHAT CHANGED: ORM

Constructing new instances

from aiida import orm
computer = orm.Computer(name='localhost’, hostname='localhost')

Retrieving an instance from the ‘collection’ through the object s property

from aiida import orm
computer = orm.Computer.objects.get (name='localnost')

Shortcut directly on the class

from aiida import orm
computer = orm.Computer .get (name='localnost')

¢5AIDA

310f34

WHAT CHANGED: ORM

Constructing new instances

from aiida import orm
computer = orm.Computer(name='localhost’, hostname='localhost')

Retrieving an instance from the ‘collection’ through the object s property

from aiida import orm
computer = orm.Computer.objects.get (name='localnost')

Shortcut directly on the class

from aiida import orm
computer = orm.Computer .get (name='localnost')

Getting all instance from the collection

from aiida import orm
computers = orm.Computer .objects.all()

o°oAiiDA 310f34

WHAT CHANGED: ORM

Constructing new instances

from aiida import orm
computer = orm.Computer(name='localhost’, hostname='localhost')

Retrieving an instance from the ‘collection’ through the object s property

from aiida import orm
computer = orm.Computer.objects.get (name='localnost')

Shortcut directly on the class

from aiida import orm
computer = orm.Computer .get (name='localnost')

Getting all instance from the collection

from aiida import orm
computers = orm.Computer .objects.all()

Finding multiple instances with filters

from aiida import orm
computers = orm.Computer .objects. find(Tilters={'hostname': 'localhost'}, order_by='name')

l’POAiiDA 310f34

WHAT CHANGED: ORM

Constructing new instances

from aiida import orm
computer = orm.Computer(name='localhost’, hostname='localhost')

Retrieving an instance from the ‘collection’ through the object s property

from aiida import orm
computer = orm.Computer.objects.get (name='localnost')

Shortcut directly on the class

from aiida import orm
computer = orm.Computer .get (name='localnost')

Getting all instance from the collection

from aiida import orm
computers = orm.Computer .objects.all()

Finding multiple instances with filters

from aiida import orm
computers = orm.Computer .objects. find(Tilters={'hostname': 'localhost'}, order_by='name')

Deleting an instance

from aiida import orm
orm. Computer . objects. delete(computer . pk)

o°oAiiDA 310f34

WHAT CHANGED: REPOSITORY INTERFACE

Inaiida-core<=0.12.«,thefile repository of a node lives on the local filesystem
Provided the folder property to get a folder object to interact with it, e.g.:

® node.folder.abspath
® node.folder.get_abs_path(’somefile.txt’)
® node.folder.add_path(’/some/path.txt’, ’'destination.txt’)

¢5AIIDA -

WHAT CHANGED: REPOSITORY INTERFACE

Inaiida-core<=0.12.«,thefile repository of a node lives on the local filesystem
Provided the folder property to get a folder object to interact with it, e.g.:

® node.folder.abspath

® node.folder.get_abs_path(’somefile.txt’)

® node.folder.add_path ('’ /some/path.txt’, ’destination.txt’)

In the future, repository no longer necessarily lives on local filesystem

* Remote filesystem
* Object store

¢5AIIDA

320f34

WHAT CHANGED: REPOSITORY INTERFACE

Inaiida-core<=0.12.«,thefile repository of a node lives on the local filesystem
Provided the folder property to get a folder object to interact with it, e.g.:

® node.folder.abspath
® node.folder.get_abs_path(’somefile.txt’)
® node.folder.add_path ('’ /some/path.txt’, ’destination.txt’)

In the future, repository no longer necessarily lives on local filesystem

* Remote filesystem
* Object store

Additionally, files may potentially be packed in archives for efficiency reasons

* Tar archive
* Zip compressed

¢5AIIDA

320f34

WHAT CHANGED: REPOSITORY INTERFACE

Inaiida-core<=0.12.«,thefile repository of a node lives on the local filesystem

Provided the folder property to get a folder object to interact with it, e.g.:

® node.folder.abspath
® node.folder.get_abs_path(’somefile.txt’)
® node.folder.add_path ('’ /some/path.txt’, ’destination.txt’)

In the future, repository no longer necessarily lives on local filesystem

* Remote filesystem
* Object store

Additionally, files may potentially be packed in archives for efficiency reasons

* Tar archive
* Zip compressed

In preparation, node repository interface has been significantly changed
Now to interact, go through the node . repository property, which has methods to:
* Listobjects: 1ist_object_names, list_objects
* Get objects: get_obiject, get_object_content, open
* Putobjects: put_object_from_tree,put_object_from_file,put_object_from_ filelike
* Delete objects: delete_object

¢5AIIDA -

ACKNOWLEDGMENTS

e

Casper Marco Sebastiaan Leonid Nicola
Andersen Borelli Huber Kahle Marzari
(EPFL) (EPFL) (EPFL) (EPFL) (EPFL)
é L}
\) ;
L A & [e |
Martin Giovanni Aliaksandr Snehal Spyros
Muhrin Passaro Pizzi Yakutovich Waychal Zoupanos
(EPFL) (EPFL) (EPFL) (EPFL) (EPFL) (EPFL)

Martin Uhrin, Rico Hauselmann, Nicolas Mounet, Andrea Cepellotti, Fernando Gargiulo, Riccardo Sabatini, Rico Hauselmann, Valentin Bersier, Jocelyn Boullier, Jens Bréder, Marco
Dorigo, Marco Gibertini, Dominik Gresch Eric Hontz, Daniel Marchand , Tiziano Miiller, Phillippe Schwaller, lvano E. Castelli, lan Lee, Gianluca Prandini, Jianxing Huang, Antimo
Marrazzo, Nicola Varini, Mario Zic, Vladimir Dikan, Michael Atambo, Ole Schiitt, Y.-W. Fang, Philipp RiiBmann, Bonan Zhu, Andreas Stamminger, Keija Cui, Daniel Hollas, Jianxing Huang,
Espen Flage-Larsen

oﬁoAiiDA 330f34

FIN

FIN

¢5AIIDA

