Writing workflows in AiiDA

A short introduction to AiiDA’s engine

Sebastiaan Huber

AiiDA Workflow Tutorial May 22"d 2019

9

sAIIDA

o

AIIDA'S ENGINE: AUTOMATED PROVENANCE

Keeping data provenance is important...

OOOA”DA 20f19

AIIDA'S ENGINE: AUTOMATED PROVENANCE

Keeping data provenance is important...

... but imagine having to manually link everything up

oooAiiDA 20f 19

AIIDA'S ENGINE: AUTOMATED PROVENANCE

Keeping data provenance is important...

... but imagine having to manually link everything up

Al | DA Automated Interactive Infrastructure and Database

oooAiiDA 20f 19

AUTOMATED PROVENANCE: CALCULATIONS

Imagine the following simple arithmetic problem:
Add two numbers and multiply the sum by third

def add(x, y):
return x +y

def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

¢5AIIDA

30f 19

AUTOMATED PROVENANCE: CALCULATIONS

Imagine the following simple arithmetic problem:
Add two numbers and multiply the sum by third

def add(x, y):
return x +y

def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

Just apply the calcfunction decorator...

from aiida.engine import calcfunction
@calefunction
def add(x, y):
return x +y
gealefunction
def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

oﬁoAiiDA 30f19

AUTOMATED PROVENANCE: CALCULATIONS

Imagine the following simple arithmetic problem: ... and pass storable data types when calling
Add two numbers and multiply the sum by third

from aiida. engine import calcfunction
from aiida.orm import Int
def add(x, y):

return x + y @calcfunction
def add(x, y):
def multiply(x, y): return x + y
return x *
¥ @calefunction
result = multiply(add(1, 2), 3) def multiply(x, y):

return x * y

result = multiply(add(Int(1), Int(2)), Int(3))

Just apply the calcfunction decorator...

from aiida.engine import calcfunction
@calefunction
def add(x, y):
return x +y
gealefunction
def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

oﬁoAiiDA 30f19

AUTOMATED PROVENANCE: CALCULATIONS

Imagine the following simple arithmetic problem: ... and pass storable data types when calling
Add two numbers and multiply the sum by third

from aiida. engine import calcfunction
from aiida.orm import Int
def add(x, y):

return x + y @calcfunction
def add(x, y):
def multiply(x, y): return x + y
return x *
¥ @calefunction
result = multiply(add(1, 2), 3) def multiply(x, y):

return x * y

result = multiply(add(Int(1), Int(2)), Int(3))

Just apply the calcfunction decorator... Provenance is automatically stored in the graph
from aiida.engine import calcfunction DX1 63
@icalefunction \ \
def add(x, y):
return x + y y SuM RESULT
@calcfunction D2 CREATE D4 CREATE Ds

def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

¢5AIDA 3019

AUTOMATED PROVENANCE: CALCULATIONS

Imagine the following simple arithmetic problem:
Add two numbers and multiply the sum by third

def add(x, y):
return x +y

def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

Just apply the calcfunction decorator...

from aiida.engine import calcfunction
@calefunction
def add(x, y):
return x +y
gealefunction
def multiply(x, y):
return x * y

result = multiply(add(1, 2), 3)

¢5AIIDA

... and pass storable data types when calling
from aiida.engine import calcfunction
from aiida.orm import Int
@calcfunction
def add(x, y):
return x + y
@calcfunction
def multiply(x, y):

return x * y

result = multiply(add(Int(1), Int(2)), Int(3))

Provenance is automatically stored in the graph

x z

D; D3
\ SUM \ RESULT
D2 CREATE D4 CREATE D5
Directed Acyclic Graph

¢ Directed: inputs go in, and outputs come out

¢ Acyclic: causality principle forbids an output being its own input

30of 19

AUTOMATED PROVENANCE: EXTERNAL CODES

But not all code is well-suited as python code:
What about running codes external to AiiDA?

#!/bin/bash

Read two integers from file 'aiida.in’ and echo their sum
x=§(cat aiida.in | awk '{print $1}')

y=§(cat aiida.in | awk '{print $2}')

echo $(($x + %y))

¢5AIIDA

40f19

AUTOMATED PROVENANCE: EXTERNAL CODES

But not all code is well-suited as python code:
What about running codes external to AiiDA?

#!/bin/bash

Read two integers from file 'aiida.in’ and echo their sum
x=§(cat aiida.in | awk '{print $1}')

y=§(cat aiida.in | awk '{print $2}')

echo $(($x + %y))

Implementation is different, but running very similar...

from aiida.engine import run
from aiida.orm import load_code, Int
from aiida.plugins import CalculationFactory

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')

inputs = {
'code": load_code('add@localhost'),
'x': Int(1),
'y': Int(2),

}

run(ArithmeticAddCalculation, **inputs)

¢5AIIDA

40f19

AUTOMATED PROVENANCE: EXTERNAL CODES

But not all code is well-suited as python code: Generated provenance similar to that of calculation function
What about running codes external to AiiDA? .
#!/bin/bash D1 RESULT
Read two integers from file 'aiida.in’ and echo their sum < 4
x=$(cat aiida.in | awk '{print $1}') cﬂ)“

y=§(cat aiida.in | awk '{print $2}')

echo $(($x + $y)) %ﬁ o

Implementation is different, but running very similar... D3

from aiida.engine import run
from aiida.orm import load_code, Int
from aiida.plugins import CalculationFactory

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')

inputs = {
'code": load_code('add@localhost'),
'x': Int(1),
'y': Int(2),

}

run(ArithmeticAddCalculation, **inputs)

¢5AIDA

40f19

AUTOMATED PROVENANCE: EXTERNAL CODES

But not all code is well-suited as python code: Generated provenance similar to that of calculation function
What about running codes external to AiiDA? .
#!/bin/bash D1 REsuLT
Read two integers from file 'aiida.in’ and echo their sum < 4
x=$(cat aiida.in | awk '{print $1}') cﬂ)“

y=§(cat aiida.in | awk '{print $2}')

echo $(($x + $y)) %ﬁ o

Implementation is different, but running very similar... 3

from aiida.engine import run
from aiida.orm import load_code, Int
OB SRS S0 (e B R 10 = Can be run on remote machines through job scheduler
ArithmeticAddCalculation = CalculationFactory('arithmetic.add') . .)
» Implementation independent of job scheduler

inputs = {
'code": load_code('add@localhost'), . . N).
s TnE(L), ¢ To change machine, just change the ‘code’ input
'y': Int(2),

} L]

Implementation focus of one of work groups tomorrow

run(ArithmeticAddCalculation, **inputs)

¢5AIIDA

40f19

AUTOMATED PROVENANCE: EXTERNAL CODES

But not all code is well-suited as python code:
What about running codes external to AiiDA?

#!/bin/bash

Read two integers from file 'aiida.in’ and echo their sum
x=§(cat aiida.in | awk '{print $1}')

y=§(cat aiida.in | awk '{print $2}')

echo $(($x + %y))

Implementation is different, but running very similar...

from aiida.engine import run
from aiida.orm import load_code, Int
from aiida.plugins import CalculationFactory

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')

inputs = {
'code": load_code('add@localhost'),
'x': Int(1),
'y': Int(2),

}

run(ArithmeticAddCalculation, **inputs)

¢5AIDA

Generated provenance similar to that of calculation function

code

1 RBULT
cﬂ)ﬁ 4
%ﬁ RETRIEVED

3

Let’s go back to our add-multiple example

D1 \ D3 \
SuM RESULT
DZ CREATE| D4 CREATE 5

Individual sequence of calculations recorded...
.. but not the ‘how’ or ‘why’

40f19

AUTOMATED PROVENANCE: WORKFLOWS

Work function can be used to store logical provenance

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

@calcfunction
def add(x, y):
return Int(x + y)

@calcfunction
def multiply(x, y):
return Int(x * y)

@workfunction

def add_and_multiply(x, y, z):
sum = add(x,)
product = multiply(sum, z)
return product

result = add_and_multiply(Int(1), Int(2), Int(3))

¢5AIIDA

50f19

AUTOMATED PROVENANCE: WORKFLOWS

Work function can be used to store logical provenance

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

@calcfunction
def add(x, y):
return Int(x + y)

@calcfunction
def multiply(x, y):
return Int(x * y)

@workfunction

def add_and_multiply(x, y, z):
sum = add(x,)
product = multiply(sum, z)
return product

result = add_and_multiply(Int(1), Int(2), Int(3))

50f19

AUTOMATED PROVENANCE: WORKFLOWS

Work function can be used to store logical provenance Logical provenance allows to ‘hide’ complexity

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

@calcfunction
def add(x, y):

return Int(x + y) T
TS RETURN
@Bcalcfunction Y
def multiply(x, y): -

return Int(x * y)

@workfunction

def add_and_multiply(x, y, z):
sum = add(x, y)
product = multiply(sum, z)
return product

result = add_and_multiply(Int(1), Int(2), Int(3))

50f19

AUTOMATED PROVENANCE: WORKFLOWS

Work function can be used to store logical provenance

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

@calcfunction
def add(x, y):
return Int(x + y)

@Bcalcfunction
def multiply(x, y):
return Int(x * y)

@workfunction

def add_and_multiply(x, y, z):
sum = add(x, y)
product = multiply(sum, z)
return product

result = add_and_multiply(Int(1), Int(2), Int(3))

Logical provenance allows to ‘hide’ complexity

Ty RETURN
w2

Or by ignoring it, retrieve the original data provenance

s
e ‘ Acm

50f 19

AUTOMATED PROVENANCE: WORKFLOWS

Work chains achieve the same but save progress in between steps

from aiida.engine import WorkChain, calcfunction
from aiida.orm import Int

Gcalefunction
def add(x, y):
return Int(x + y)

@calefunction
def multiply(x, y):
return Int(x * y)

class AddAndMultiplyWorkChain(WorkChain):

@classmethod
def define(cls, spec):
super(AddAndMultiplyWorkChain, cls).define(spec)
spec.input('x")
spec.input('y')
spec.input('z')
spec.outline(
cls.add,
cls.multiply,
cls.results,

spec.output('result')

def add(self):
self.ctx.sum = add(self.inputs.x, self.inputs.y)

def multiply(self):
self.ctx.product = multiply(self.ctx.sum, self.inputs.z)

def results(self):
self.out('result’, self.ctx.product)

oﬁoAiiDA 60f19

AUTOMATED PROVENANCE: WORKFLOWS

Work chains achieve the same but save progress in between steps

from aiida.engine import WorkChain, calcfunction
from aiida.orm import Int y

Gcalefunction
def add(x, y):
return Int(x + y)

@calefunction
def multiply(x, y):
return Int(x * y)

class AddAndMultiplyWorkChain(WorkChain): D
3

@classmethod
def define(cls, spec):
super(AddAndMultiplyWorkChain, cls).define(spec)
spec.input('x")
spec.input('y')
spec.input('z')
spec.outline(
cls.add,
cls.multiply,
cls.results,

spec.output('result')

def add(self):
self.ctx.sum = add(self.inputs.x, self.inputs.y)

def multiply(self):
self.ctx.product = multiply(self.ctx.sum, self.inputs.z)

def results(self):
self.out('result’, self.ctx.product)

oooAiiDA 60f 19

AUTOMATED PROVENANCE: WORKFLOWS

Work chains achieve the same but save progress in between steps

from aiida.engine import WorkChain, calcfunction
from aiida.orm import Int

Gcalefunction
def add(x, y):
return Int(x + y)

@calefunction
def multiply(x, y):
return Int(x * y)

class AddAndMultiplyWorkChain(WorkChain):

@classmethod
def define(cls, spec):
super (AddAndMULtiplyWorkChain, cls).define(spec)
spec. input('x’)

spec. input('y") Only difference with work function solution is node type

spec.input('z')

spec. outline(
cls.add,
cls.multiply,
cls.results,

spec.output('result')

def add(self):
self.ctx.sum = add(self.inputs.x, self.inputs.y)

def multiply(self):
self.ctx.product = multiply(self.ctx.sum, self.inputs.z)

def results(self):
self.out('result’, self.ctx.product)

¢5AIDA

\,
NN
“\\

60f 19

AUTOMATED PROVENANCE: WORKFLOWS

Work chains achieve the same but save progress in between steps

from aiida.engine import WorkChain, calcfunction
from aiida.orm import Int

Gcalefunction
def add(x, y):
return Int(x + y)

@calefunction
def multiply(x, y):
return Int(x * y)

class AddAndMultiplyWorkChain(WorkChain):

@classmethod
def define(cls, spec):
super(AddAndMultiplyWorkChain, cls).define(spec)
spec.input('x")
spec.input('y')
spec.input('z')
spec.outline(
cls.add,
cls.multiply,
cls.results,

spec.output('result')

a
a
5

add(self):
self.ctx.sum = add(self.inputs.x, self.inputs.y)

def multiply(self):
self.ctx.product = multiply(self.ctx.sum, self.inputs.z)

def results(self):
self.out('result’, self.ctx.product)

¢5AIDA

Many advantages over work function

» Can be submitted to the daemon
» Progress is saved between steps in checkpoints

= Process specification gives succinct but clear summary

Captures the scientific knowledge and can be re-run

Can be re-used as building block in more complex workflows

60f 19

AUTOMATED PROVENANCE: LOSING PROVENANCE

Workflows cannot create new data.
Doing so anyway, will cause loss of provenance

Take first example: add two numbers and multiply with third...
... but now compute the product inside the work function

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

@calcfunction
def add(x, y):
return Int(x + y)

oworkfunction
def add_and_multiply(x, y, 2):
sum = add(x, y)
product = Int(sun * z)
return product.store()

result = add_and_multiply(Int(1), Int(2), Int(3))

oﬁoAiiDA 70f19

AUTOMATED PROVENANCE: LOSING PROVENANCE

Workflows cannot create new data. Provenance will miss link between sum and final result
Doing so anyway, will cause loss of provenance

Take first example: add two numbers and multiply with third...
... but now compute the product inside the work function

from aiida.engine import calcfunction, workfunction s JRESULT
from aiida.orm import Int 5
@calcfunction
def add(x, y):

return Int(x + y)

oworkfunction
def add_and_multiply(x, y, 2):
sum = add(x, y)
product = Int(sun * z)
return product.store()

result = add_and_multiply(Int(1), Int(2), Int(3))

l’POAiiDA 70f19

AUTOMATED PROVENANCE: LOSING PROVENANCE

Workflows cannot create new data. Provenance will miss link between sum and final result
Doing so anyway, will cause loss of provenance

Take first example: add two numbers and multiply with third...
... but now compute the product inside the work function

from aiida.engine import calcfunction, workfunction
from aiida.orm import Int

T ARESUET
\ D D:
\
\
@calcfunction \
def add(x, y): \
return Int(x + y)

D3
@workfunction
def add_and_multiply(x, y, 2):
sum = add(x, y)
product = Int(sum * z)
return product.store()

e_RETURN

result = add_and_multiply(Int(1), Int(2), Int(3))

Why don’t we just give the workflows the power to
create?
SSAIDA

70of 19

WHY A DIFFERENCE BETWEEN CALCULATIONS AND WORKFLOWS?

Since workflows can return, they can also return their inputs

from aiida.engine import workfunction
from aiida.orm import Int
@workfunction
def maximum(x, y, z):

return sorted([x, y, z])[-1]

result = maximum(Int(1), Int(2), Int(3))

o°oAiiDA 80f19

WHY A DIFFERENCE BETWEEN CALCULATIONS AND WORKFLOWS?

Since workflows can return, they can also return their inputs
D, D, Ds3
from aiida.engine import workfunction

from aiida.orm import Int \ l / ‘?.‘

@workfunction /
def maximum(x, y, z):

return sorted([x, y, z])[-1] " RETURN
result = maximum(Int(1), Int(2), Int(3)) .

This cycle breaks the acyclicity — no more DAG

¢5AIDA Bof19

WHY A DIFFERENCE BETWEEN CALCULATIONS AND WORKFLOWS?

Since workflows can return, they can also return their inputs
D, D, Ds3
from aiida.engine import workfunction

from aiida.orm import Int \ l / &

workfunction ;
def maximum(x, Yy, Z):

return sorted([x, y, z])[-1] " RETURN
result = maximm(Int(1), Tnt(2), Tnt(3)) .

This cycle breaks the acyclicity — no more DAG
Two clearly distinct types of processes

CALCULATIONS WORKFLOWS

Can create new data Can call other processes

Can return existing data

oﬁoAiiDA 80f19

PROVENANCE DESIGN: THE RULES

s

B>

CalcJobNode A CalcFunctionNode
‘ WorkChainNode v WorkFunctionNode

Data

AiiDA

Provenance Graph

CALL_WORK

e AL cae ™ RETURN

el ..
' CREATE.
INPUT cALC " " s

.

90of19

PROVENANCE DESIGN: THE RULES

ORM Hierarchy

Node

¢5AIDA

90of19

PROVENANCE DESIGN: THE RULES

ORM Hierarchy

Node

[—] =N
B B e
.
Link Hierarchy

- — - - — - - . -

INPUT \ WORK

RETURN

oooAiiDA 90of 19

ENGINE: EVERYTHING IS A PROCESS

New processes to define calculations and workflows

Process class

Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that run multiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the work funct ion decorator

¢5AIIDA

100f 19

ENGINE: EVERYTHING IS A PROCESS

New processes to define calculations and workflows

Process class

Node class

Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that run multiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the work funct ion decorator
PROCESS STATE
Active Terminated
Created Killed
Running Excepted
Waiting Finished

¢5AIIDA

100f 19

ENGINE: EVERYTHING IS A PROCESS

New processes to define calculations and workflows

Process class Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that run multiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the work funct ion decorator

PROCESS STATE PROCESS NODE ATTRIBUTES

Active Terminated Property Meaning

Created Killed process_state Returns the current process state

Running Excepted exit_status Returns the exit status, or None if not set
Waiting Finished exit_message Returns the exit message, or None if not set

¢5AIDA

is_terminated
is_killed
is_excepted
is_finished
is_finished_ok
is_failed

Returns True if the process was either Killed, Exceptedor Finished
Returns True if the processis Killed

Returns True if the process is Excepted

Returns True if the processis Finished

Returns True if the processis Finished and the exit_statusisequal to zero
Returns True if the processis Finished and the exit_status is non-zero

100f 19

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run
run_get_node
run_get_pk
submit

¢5AIIDA

Run blockingly and return result

Run blockingly and return result + node
Run blockingly and return result + pk
Submit to daemon and return node

110f 19

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Submit to the daemon

from aiida import orm
from aiida.engine import submit

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')
node = submit(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

o°oAiiDA 110f19

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Run blockingly in local interpreter

from aiida import orm
from aiida.engine import run

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')
result = run{ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

oﬁoAiiDA 110f19

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Run variants to get the process node or pk in addition to the result

from aiida import orm
from aiida.engine import run_get_node, run_get_pk

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')

result, node = run_get_node(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))
result, pk = run_get_pk(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

l’POAiiDA 110f19

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Variants are available as attributes on run launcher requiring only single import

from aiida import orm
from aiida.engine import run

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')

result = run{ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

result, node = run.get_node(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))
result, pk = run.get_pk(ArithmeticAddCalculation, x=orm.Int(1), y=orm.Int(2))

¢5AIDA

110f 19

ENGINE: EVERYTHING IS A PROCESS

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Syntactic keyword expansion for big input dictionaries

from aiida import orm
from aiida.engine import submit

ArithmeticAddCalculation = CalculationFactory('arithmetic.add')
inputs = {

'x': orm.Int(1),

'y': orm.Int(2)

node = submit(ArithmeticAddCalculation, **inputs)

oﬁoAiiDA 110f19

ENGINE: PROCESS TASKS

What happens when we submit a process?

o°oAiiDA 120f 19

ENGINE: PROCESS TASKS

What happens when we submit a process?

1. Store node in database

OOOA”DA 120f 19

ENGINE: PROCESS TASKS

What happens when we submit a process?

1. Store node in database

2. Send task to RabbitMQ

Dl N |-

oﬁoAiiDA 120f 19

ENGINE: THE TASK QUEUE

What happens with those tasks?

o°oAiiDA 130f 19

ENGINE: THE TASK QUEUE

What happens with those tasks?

Task queue

5 u

oooAiiDA 130f 19

ENGINE: RELYING ON A RESILIENT AND ROBUST RABBIT

The promise of RabbitMQ

All tasks are persisted to disk

Each task is guaranteed to be delivered

» Eachtask is guaranteed to be sent to only one listener at a time

Each task is guaranteed to be completed

¢5AIDA

140f 19

ENGINE: RELYING ON A RESILIENT AND ROBUST RABBIT

The promise of RabbitMQ

All tasks are persisted to disk

Each task is guaranteed to be delivered

» Eachtask is guaranteed to be sent to only one listener at a time

Each task is guaranteed to be completed

This ensures that:

1. We can run multiple processes in parallel independently

2. Each launched task or "process" will eventually be completed

No matter what happens

¢5AIDA

140f 19

ENGINE: EVERYTHING IS A PROCESS

verdi process:yourone-stop-shop for inspecting and interacting with processes

oﬁoAiiDA 150f 19

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process list:listactive andterminated processes

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process status:treerepresentation of call stack

1
ISHED]

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process report:complete report of log messages and scheduler stdout/stderr

ul on] : P

iorkchain con

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

verdi process:your one-stop-shop for inspecting and interacting with processes

verdi process pause: pause an active process

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

verdi process: your one-stop-shop for inspecting and interacting with processes

verdi process pause: pause an active process

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process pause: pause an active process

heduled pa

verdi process play:resume apaused process

¢5AIIDA

ENGINE: EVERYTHING IS A PROCESS

: your one-stop-shop for inspecting and interacting with processes

verdi process pause: pause an active process

¢5AIIDA

ENGINE: ROBUSTNESS

Automatic retry for transport tasks with exponential backoff

¢5AIIDA

ENGINE: ROBUSTNESS

Automatic retry for transport tasks with exponential backoff

¢5AIIDA

ENGINE: ROBUSTNESS

Automatic retry for transport tasks with exponential backoff

t_minimum_j

5 pute t minimum j

SATDA

ACKNOWLEDGMENTS

e

Casper Marco Sebastiaan Leonid Nicola
Andersen Borelli Huber Kahle Marzari
(EPFL) (EPFL) (EPFL) (EPFL) (EPFL)
é L}
\) ;
L A & [e |
Martin Giovanni Aliaksandr Snehal Spyros
Muhrin Passaro Pizzi Yakutovich Waychal Zoupanos
(EPFL) (EPFL) (EPFL) (EPFL) (EPFL) (EPFL)

Martin Uhrin, Rico Hauselmann, Nicolas Mounet, Andrea Cepellotti, Fernando Gargiulo, Riccardo Sabatini, Rico Hauselmann, Valentin Bersier, Jocelyn Boullier, Jens Bréder, Marco
Dorigo, Marco Gibertini, Dominik Gresch Eric Hontz, Daniel Marchand , Tiziano Miiller, Phillippe Schwaller, lvano E. Castelli, lan Lee, Gianluca Prandini, Jianxing Huang, Antimo
Marrazzo, Nicola Varini, Mario Zic, Vladimir Dikan, Michael Atambo, Ole Schiitt, Y.-W. Fang, Philipp RiiBmann, Bonan Zhu, Andreas Stamminger, Keija Cui, Daniel Hollas, Jianxing Huang,
Espen Flage-Larsen

oﬁoAiiDA 180f 19

FIN

FIN

oﬁoAiiDA 190f 19

