
Writing workflows in AiiDA
A short introduction to AiiDA’s engine

Sebastiaan Huber
AiiDAWorkflow TutorialMay 22nd 2019



AIIDA’S ENGINE: AUTOMATEDPROVENANCE

Keeping data provenance is important...

... but imagine having tomanually link everything up

AiiDA Automated Interactive Infrastructure andDatabase

2 of 19



AIIDA’S ENGINE: AUTOMATEDPROVENANCE

Keeping data provenance is important...

... but imagine having tomanually link everything up

AiiDA Automated Interactive Infrastructure andDatabase

2 of 19



AIIDA’S ENGINE: AUTOMATEDPROVENANCE

Keeping data provenance is important...

... but imagine having tomanually link everything up

AiiDA Automated Interactive Infrastructure andDatabase

2 of 19



AUTOMATEDPROVENANCE: CALCULATIONS
Imagine the following simple arithmetic problem:
Add two numbers andmultiply the sum by third

3 of 19



AUTOMATEDPROVENANCE: CALCULATIONS
Imagine the following simple arithmetic problem:
Add two numbers andmultiply the sum by third

Just apply the calcfunction decorator...

3 of 19



AUTOMATEDPROVENANCE: CALCULATIONS
Imagine the following simple arithmetic problem:
Add two numbers andmultiply the sum by third

Just apply the calcfunction decorator...

... and pass storable data types when calling

3 of 19



AUTOMATEDPROVENANCE: CALCULATIONS
Imagine the following simple arithmetic problem:
Add two numbers andmultiply the sum by third

Just apply the calcfunction decorator...

... and pass storable data types when calling

Provenance is automatically stored in the graph

3 of 19



AUTOMATEDPROVENANCE: CALCULATIONS
Imagine the following simple arithmetic problem:
Add two numbers andmultiply the sum by third

Just apply the calcfunction decorator...

... and pass storable data types when calling

Provenance is automatically stored in the graph

DirectedAcyclicGraph
• Directed: inputs go in, and outputs come out
• Acyclic: causality principle forbids an output being its own input

3 of 19



AUTOMATEDPROVENANCE: EXTERNAL CODES
But not all code is well-suited as python code:
What about running codes external to AiiDA?

4 of 19



AUTOMATEDPROVENANCE: EXTERNAL CODES
But not all code is well-suited as python code:
What about running codes external to AiiDA?

Implementation is different, but running very similar...

4 of 19



AUTOMATEDPROVENANCE: EXTERNAL CODES
But not all code is well-suited as python code:
What about running codes external to AiiDA?

Implementation is different, but running very similar...

Generated provenance similar to that of calculation function

4 of 19



AUTOMATEDPROVENANCE: EXTERNAL CODES
But not all code is well-suited as python code:
What about running codes external to AiiDA?

Implementation is different, but running very similar...

Generated provenance similar to that of calculation function

• Can be run on remotemachines through job scheduler
• Implementation independent of job scheduler
• To changemachine, just change the ‘code’ input
• Implementation focus of one of work groups tomorrow

4 of 19



AUTOMATEDPROVENANCE: EXTERNAL CODES
But not all code is well-suited as python code:
What about running codes external to AiiDA?

Implementation is different, but running very similar...

Generated provenance similar to that of calculation function

Let’s go back to our add-multiple example

Individual sequence of calculations recorded...
... but not the ‘how’ or ‘why’

4 of 19



AUTOMATEDPROVENANCE:WORKFLOWS

Work function can be used to store logical provenance

5 of 19



AUTOMATEDPROVENANCE:WORKFLOWS

Work function can be used to store logical provenance

5 of 19



AUTOMATEDPROVENANCE:WORKFLOWS

Work function can be used to store logical provenance Logical provenance allows to ‘hide’ complexity

5 of 19



AUTOMATEDPROVENANCE:WORKFLOWS

Work function can be used to store logical provenance Logical provenance allows to ‘hide’ complexity

Or by ignoring it, retrieve the original data provenance

5 of 19



AUTOMATEDPROVENANCE:WORKFLOWS
Work chains achieve the same but save progress in between steps

6 of 19



AUTOMATEDPROVENANCE:WORKFLOWS
Work chains achieve the same but save progress in between steps

6 of 19



AUTOMATEDPROVENANCE:WORKFLOWS
Work chains achieve the same but save progress in between steps

Only difference with work function solution is node type

6 of 19



AUTOMATEDPROVENANCE:WORKFLOWS
Work chains achieve the same but save progress in between steps

Many advantages over work function
• Can be submitted to the daemon
• Progress is saved between steps in checkpoints
• Process specification gives succinct but clear summary
• Captures the scientific knowledge and can be re-run
• Can be re-used as building block inmore complex workflows

6 of 19



AUTOMATEDPROVENANCE: LOSINGPROVENANCE
Workflows cannot create new data.
Doing so anyway, will cause loss of provenance
Take first example: add two numbers andmultiply with third...
... but now compute the product inside the work function

7 of 19



AUTOMATEDPROVENANCE: LOSINGPROVENANCE
Workflows cannot create new data.
Doing so anyway, will cause loss of provenance
Take first example: add two numbers andmultiply with third...
... but now compute the product inside the work function

Provenance will miss link between sum and final result

7 of 19



AUTOMATEDPROVENANCE: LOSINGPROVENANCE
Workflows cannot create new data.
Doing so anyway, will cause loss of provenance
Take first example: add two numbers andmultiply with third...
... but now compute the product inside the work function

Provenance will miss link between sum and final result

Why don’t we just give the workflows the power to
create?

7 of 19



WHYADIFFERENCE BETWEENCALCULATIONSANDWORKFLOWS?
Since workflows can return, they can also return their inputs

8 of 19



WHYADIFFERENCE BETWEENCALCULATIONSANDWORKFLOWS?
Since workflows can return, they can also return their inputs

This cycle breaks the acyclicity→ nomore DAG

8 of 19



WHYADIFFERENCE BETWEENCALCULATIONSANDWORKFLOWS?
Since workflows can return, they can also return their inputs

This cycle breaks the acyclicity→ nomore DAG

Two clearly distinct types of processes
CALCULATIONS

Can create new data
WORKFLOWS
Can call other processes
Can return existing data

8 of 19



PROVENANCEDESIGN: THE RULES

9 of 19



PROVENANCEDESIGN: THE RULES

9 of 19



PROVENANCEDESIGN: THE RULES

9 of 19



ENGINE: EVERYTHING IS A PROCESS
New processes to define calculations andworkflows
Process class Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that runmultiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the workfunction decorator

PROCESS STATE
Active Terminated
Created Killed
Running Excepted
Waiting Finished

PROCESS NODE ATTRIBUTES
Property Meaning
process_state Returns the current process state
exit_status Returns the exit status, or None if not set
exit_message Returns the exit message, or None if not set
is_terminated Returns True if the process was either Killed, Excepted or Finished
is_killed Returns True if the process is Killed
is_excepted Returns True if the process is Excepted
is_finished Returns True if the process is Finished
is_finished_ok Returns True if the process is Finished and the exit_status is equal to zero
is_failed Returns True if the process is Finished and the exit_status is non-zero

10 of 19



ENGINE: EVERYTHING IS A PROCESS
New processes to define calculations andworkflows
Process class Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that runmultiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the workfunction decorator

PROCESS STATE
Active Terminated
Created Killed
Running Excepted
Waiting Finished

PROCESS NODE ATTRIBUTES
Property Meaning
process_state Returns the current process state
exit_status Returns the exit status, or None if not set
exit_message Returns the exit message, or None if not set
is_terminated Returns True if the process was either Killed, Excepted or Finished
is_killed Returns True if the process is Killed
is_excepted Returns True if the process is Excepted
is_finished Returns True if the process is Finished
is_finished_ok Returns True if the process is Finished and the exit_status is equal to zero
is_failed Returns True if the process is Finished and the exit_status is non-zero

10 of 19



ENGINE: EVERYTHING IS A PROCESS
New processes to define calculations andworkflows
Process class Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that runmultiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the workfunction decorator

PROCESS STATE
Active Terminated
Created Killed
Running Excepted
Waiting Finished

PROCESS NODE ATTRIBUTES
Property Meaning
process_state Returns the current process state
exit_status Returns the exit status, or None if not set
exit_message Returns the exit message, or None if not set
is_terminated Returns True if the process was either Killed, Excepted or Finished
is_killed Returns True if the process is Killed
is_excepted Returns True if the process is Excepted
is_finished Returns True if the process is Finished
is_finished_ok Returns True if the process is Finished and the exit_status is equal to zero
is_failed Returns True if the process is Finished and the exit_status is non-zero

10 of 19



ENGINE: EVERYTHING IS A PROCESS
Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

11 of 19



ENGINE: EVERYTHING IS A PROCESS
Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Submit to the daemon

11 of 19



ENGINE: EVERYTHING IS A PROCESS
Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Run blockingly in local interpreter

11 of 19



ENGINE: EVERYTHING IS A PROCESS
Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Run variants to get the process node or pk in addition to the result

11 of 19



ENGINE: EVERYTHING IS A PROCESS
Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Variants are available as attributes on run launcher requiring only single import

11 of 19



ENGINE: EVERYTHING IS A PROCESS
Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Syntactic keyword expansion for big input dictionaries

11 of 19



ENGINE: PROCESS TASKS

What happens whenwe submit a process?

12 of 19



ENGINE: PROCESS TASKS

What happens whenwe submit a process?

1. Store node in database

12 of 19



ENGINE: PROCESS TASKS

What happens whenwe submit a process?

1. Store node in database

2. Send task to RabbitMQ

12 of 19



ENGINE: THE TASKQUEUE

What happens with those tasks?

13 of 19



ENGINE: THE TASKQUEUE

What happens with those tasks?

Task queue

13 of 19



ENGINE: RELYINGONARESILIENTANDROBUST RABBIT

The promise of RabbitMQ
• All tasks are persisted to disk
• Each task is guaranteed to be delivered
• Each task is guaranteed to be sent to only one listener at a time
• Each task is guaranteed to be completed

14 of 19



ENGINE: RELYINGONARESILIENTANDROBUST RABBIT

The promise of RabbitMQ
• All tasks are persisted to disk
• Each task is guaranteed to be delivered
• Each task is guaranteed to be sent to only one listener at a time
• Each task is guaranteed to be completed

This ensures that:
1.We can runmultiple processes in parallel independently

2. Each launched task or "process" will eventually be completed
Nomatter what happens

14 of 19



ENGINE: EVERYTHING IS A PROCESS
verdi process: your one-stop-shop for inspecting and interacting with processes

15 of 19



ENGINE: EVERYTHING IS A PROCESS
verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process list: list active and terminated processes

15 of 19



ENGINE: EVERYTHING IS A PROCESS
verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process status: tree representation of call stack

15 of 19



ENGINE: EVERYTHING IS A PROCESS
verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process report: complete report of logmessages and scheduler stdout/stderr

15 of 19



ENGINE: EVERYTHING IS A PROCESS
verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process pause: pause an active process

verdi process play: resume a paused process

verdi process kill: kill an active process

verdi process pause/play/kill: fails if process is already terminated

16 of 19



ENGINE: EVERYTHING IS A PROCESS
verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process pause: pause an active process

verdi process play: resume a paused process

verdi process kill: kill an active process

verdi process pause/play/kill: fails if process is already terminated

16 of 19



ENGINE: EVERYTHING IS A PROCESS
verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process pause: pause an active process

verdi process play: resume a paused process

verdi process kill: kill an active process

verdi process pause/play/kill: fails if process is already terminated

16 of 19



ENGINE: EVERYTHING IS A PROCESS
verdi process: your one-stop-shop for inspecting and interacting with processes
verdi process pause: pause an active process

verdi process play: resume a paused process

verdi process kill: kill an active process

verdi process pause/play/kill: fails if process is already terminated

16 of 19



ENGINE: ROBUSTNESS
Automatic retry for transport tasks with exponential backoff

Rate limited connections to remote clusters per daemonworker

Rate limited scheduler state queries per daemonworker

17 of 19



ENGINE: ROBUSTNESS
Automatic retry for transport tasks with exponential backoff

Rate limited connections to remote clusters per daemonworker

Rate limited scheduler state queries per daemonworker

17 of 19



ENGINE: ROBUSTNESS
Automatic retry for transport tasks with exponential backoff

Rate limited connections to remote clusters per daemonworker

Rate limited scheduler state queries per daemonworker

17 of 19



ACKNOWLEDGMENTS

Casper
Andersen
(EPFL)

Marco
Borelli
(EPFL)

Sebastiaan
Huber
(EPFL)

Leonid
Kahle
(EPFL)

Nicola
Marzari
(EPFL)

Martin
Muhrin
(EPFL)

Elsa
Passaro
(EPFL)

Giovanni
Pizzi
(EPFL)

Aliaksandr
Yakutovich
(EPFL)

Snehal
Waychal
(EPFL)

Spyros
Zoupanos
(EPFL)

Martin Uhrin, Rico Häuselmann, NicolasMounet, Andrea Cepellotti, Fernando Gargiulo, Riccardo Sabatini, Rico Häuselmann, Valentin Bersier, Jocelyn Boullier, Jens Bröder, Marco
Dorigo, Marco Gibertini, Dominik Gresch Eric Hontz, Daniel Marchand , TizianoMüller, Phillippe Schwaller, Ivano E. Castelli, Ian Lee, Gianluca Prandini, Jianxing Huang, Antimo
Marrazzo, Nicola Varini, Mario Zic, Vladimir Dikan,Michael Atambo, Ole Schütt, Y.-W. Fang, Philipp Rüßmann, Bonan Zhu, Andreas Stamminger, Keija Cui, Daniel Hollas, Jianxing Huang,
Espen Flage-Larsen

18 of 19



FIN

FIN

19 of 19


