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AIIDA’S ENGINE: AUTOMATEDPROVENANCE

Keeping data provenance is important...

... but imagine having tomanually link everything up
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AUTOMATEDPROVENANCE: CALCULATIONS
Imagine the following simple arithmetic problem:
Add two numbers andmultiply the sum by third

Just apply the calcfunction decorator...

... and pass storable data types when calling

Provenance is automatically stored in the graph

DirectedAcyclicGraph
• Directed: inputs go in, and outputs come out
• Acyclic: causality principle forbids an output being its own input
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But not all code is well-suited as python code:
What about running codes external to AiiDA?
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AUTOMATEDPROVENANCE: EXTERNAL CODES
But not all code is well-suited as python code:
What about running codes external to AiiDA?

Implementation is different, but running very similar...

Generated provenance similar to that of calculation function

• Can be run on remotemachines through job scheduler
• Implementation independent of job scheduler
• To changemachine, just change the ‘code’ input
• Implementation focus of one of work groups tomorrow
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AUTOMATEDPROVENANCE: EXTERNAL CODES
But not all code is well-suited as python code:
What about running codes external to AiiDA?

Implementation is different, but running very similar...

Generated provenance similar to that of calculation function

Let’s go back to our add-multiple example

Individual sequence of calculations recorded...
... but not the ‘how’ or ‘why’
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Work function can be used to store logical provenance Logical provenance allows to ‘hide’ complexity

Or by ignoring it, retrieve the original data provenance
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Only difference with work function solution is node type

6 of 19



AUTOMATEDPROVENANCE:WORKFLOWS
Work chains achieve the same but save progress in between steps

Many advantages over work function
• Can be submitted to the daemon
• Progress is saved between steps in checkpoints
• Process specification gives succinct but clear summary
• Captures the scientific knowledge and can be re-run
• Can be re-used as building block inmore complex workflows
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AUTOMATEDPROVENANCE: LOSINGPROVENANCE
Workflows cannot create new data.
Doing so anyway, will cause loss of provenance
Take first example: add two numbers andmultiply with third...
... but now compute the product inside the work function
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AUTOMATEDPROVENANCE: LOSINGPROVENANCE
Workflows cannot create new data.
Doing so anyway, will cause loss of provenance
Take first example: add two numbers andmultiply with third...
... but now compute the product inside the work function

Provenance will miss link between sum and final result

Why don’t we just give the workflows the power to
create?
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WHYADIFFERENCE BETWEENCALCULATIONSANDWORKFLOWS?
Since workflows can return, they can also return their inputs
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WHYADIFFERENCE BETWEENCALCULATIONSANDWORKFLOWS?
Since workflows can return, they can also return their inputs

This cycle breaks the acyclicity→ nomore DAG

Two clearly distinct types of processes
CALCULATIONS

Can create new data
WORKFLOWS
Can call other processes
Can return existing data
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ENGINE: EVERYTHING IS A PROCESS
New processes to define calculations andworkflows
Process class Node class Used for
CalcJob CalcJobNode Calculations performed by external codes
WorkChain WorkChainNode Workflows that runmultiple sub processes
FunctionProcess CalcFunctionNode Python functions decorated with the calcfunction decorator
FunctionProcess WorkFunctionNode Python functions decorated with the workfunction decorator

PROCESS STATE
Active Terminated
Created Killed
Running Excepted
Waiting Finished

PROCESS NODE ATTRIBUTES
Property Meaning
process_state Returns the current process state
exit_status Returns the exit status, or None if not set
exit_message Returns the exit message, or None if not set
is_terminated Returns True if the process was either Killed, Excepted or Finished
is_killed Returns True if the process is Killed
is_excepted Returns True if the process is Excepted
is_finished Returns True if the process is Finished
is_finished_ok Returns True if the process is Finished and the exit_status is equal to zero
is_failed Returns True if the process is Finished and the exit_status is non-zero
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ENGINE: EVERYTHING IS A PROCESS
Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
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Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Variants are available as attributes on run launcher requiring only single import
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ENGINE: EVERYTHING IS A PROCESS
Four processes launchers with identical interface
run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node
Syntactic keyword expansion for big input dictionaries
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ENGINE: PROCESS TASKS

What happens whenwe submit a process?
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What happens whenwe submit a process?

1. Store node in database

2. Send task to RabbitMQ
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ENGINE: THE TASKQUEUE

What happens with those tasks?
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What happens with those tasks?

Task queue

13 of 19



ENGINE: RELYINGONARESILIENTANDROBUST RABBIT

The promise of RabbitMQ
• All tasks are persisted to disk
• Each task is guaranteed to be delivered
• Each task is guaranteed to be sent to only one listener at a time
• Each task is guaranteed to be completed
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ENGINE: RELYINGONARESILIENTANDROBUST RABBIT

The promise of RabbitMQ
• All tasks are persisted to disk
• Each task is guaranteed to be delivered
• Each task is guaranteed to be sent to only one listener at a time
• Each task is guaranteed to be completed

This ensures that:
1.We can runmultiple processes in parallel independently

2. Each launched task or "process" will eventually be completed
Nomatter what happens
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ENGINE: EVERYTHING IS A PROCESS
verdi process: your one-stop-shop for inspecting and interacting with processes
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ENGINE: ROBUSTNESS
Automatic retry for transport tasks with exponential backoff

Rate limited connections to remote clusters per daemonworker

Rate limited scheduler state queries per daemonworker
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