
aiida.net

The AiiDA plugin ecosystem

Leopold Talirz

AiiDA-powered research projects

!2

• Questionnaire on AiiDA mailing list last week

• 27 research projects

• 25 plugins

Outline

!3

❶

❷

What's an AiiDA plugin?

❸

Python entry points 
or: How AiiDA discovers plugins

Example: aiida-diff demo plugin

❹ Developing a plugin

What's an AiiDA plugin?

!4

AiiDA plugin = python package that extends aiida-core

aiida-core
• database model

• provenance graph

• workflow engine

• REST API

• ...

What's an AiiDA plugin?

!5

AiiDA plugin = python package that extends aiida-core

aiida-core
• database model

• provenance graph

• workflow engine

• REST API

• ...

aiida-<plugin>
• calculation plugins

• parser plugins

• workflows

• data types

• verdi commands

• schedulers

• transports

• db importers/exporters

• future: REST endpoints

AiiDA plugin registry

!6aiidateam.github.io/aiida-registry/

https://aiidateam.github.io/aiida-registry/

Python Entry Points

!7

The problem
• aiida-siesta provides a new StmCalculation 

Q: Where to import it from?

• aiida-vasp provides a new VaspPotcarData 
Q: How can I add a verdi command for it?

• How do I list all installed workflows?

• ...

Goal
Plugins can extend standard AiiDA interfaces.

aiida-diff plugin - setup.json file

What is a python entry point?

!8

Python entry points associate python objects with free-form identifiers

Object (class, function, variable, ...)

identifier
group

groups are defined by aiida-core

How to load an entry point

!9

Loading an entry point

CalculationFactory('diff') does this

What can AiiDA plugins provide?

!10

aiida.calculations
aiida.parsers

aiida.workflows
aiida.data

aiida.cmdline
aiida.schedulers
aiida.transports

aiida.tools.dbimporters  
aiida.tools.dbexporters

List using: verdi plugin list

aiida-<plugin>
• calculation plugins

• parser plugins

• workflows

• data types

• verdi commands

• schedulers

• transports

• db importers/exporters

• future: REST endpoints

aiida-core uses entry points as well!

!11Full list in setup.json file in the aiida_core repository

E.g. verdi plugin list aiida.transports

https://github.com/aiidateam/aiida_core/blob/1d0afd4124fb8dc93c4afe9a876357756a9bc3e6/setup.json#L127

pkg_resources and reentry

!12

• pkg_resources (part of setuptools) 
provides registry and lookup for entry points

• pkg_resources does integrity checks => can be slow

• we use entry points in the verdi cli => should be fast

• reentry package

• separate entry point cache

• 10x faster

• but: need to refresh cache using reentry scan  
after installing a new aiida plugin

aiida-diff demo plugin

!13github.com/aiidateam/aiida-diff

• A demo plugin for getting started with plugin development

• wraps the diff executable

• diff is available on almost every UNIX system

• diff has command line options (e.g. -i)

• diff takes 2 input files & produces 1 output file 
diff file1 file1 > file3

➔ Covers a number of use cases already

https://github.com/aiidateam/aiida-diff

DEMO - aiida-diff

!14github.com/aiidateam/aiida-diff

Free time investment advice:
Learn how to write tests (with pytest)!

https://github.com/aiidateam/aiida-diff

Plugin design guidelines

!15

1. Start simple.  
Use existing classes like Dict, SinglefileData, …  
Write only what is necessary to pass information from/to AiiDA.

2. Don’t break data provenance.  
Store at least what is needed for full reproducibility.

3. Parse what you want to query for. 
Make a list of which information to:

1. parse into the database for querying (Dict, ...)

2. store in files for safe-keeping (e.g. SinglefileData, ...)

3. leave on the remote computer (RemoteData, ...)

4. Expose the full functionality of your code.  
Don’t artificially limit the power of a code you are wrapping. 
If the code can do it, there should be some way to do it with your plugin.

https://aiida.readthedocs.io/projects/aiida-core/en/latest/apidoc/aiida.orm.nodes.data.html#aiida.orm.nodes.data.dict.Dict
https://aiida.readthedocs.io/projects/aiida-core/en/latest/apidoc/aiida.orm.nodes.data.html#aiida.orm.nodes.data.singlefile.SinglefileData
https://aiida.readthedocs.io/projects/aiida-core/en/latest/apidoc/aiida.orm.nodes.data.html#aiida.orm.nodes.data.dict.Dict
https://aiida.readthedocs.io/projects/aiida-core/en/latest/apidoc/aiida.orm.nodes.data.html#aiida.orm.nodes.data.singlefile.SinglefileData
https://aiida.readthedocs.io/projects/aiida-core/en/latest/apidoc/aiida.orm.nodes.data.html#aiida.orm.nodes.data.RemoteData

github.com/aiidateam/aiida_core/wiki

!16

Transition to aiida-core 1.0

• Many API changes from aiida 0.12 to 1.0

• AiiDA API should remain stable from aiida-core 1.0.0b2

aiida-tutorials.readthedocs.io

!17

Transition to aiida-core 1.0

github.com/aiidalab/aiidalab-metapkg/issues/10

Is your plugin of interest on this list? If not => Group B

https://github.com/aiidalab/aiidalab-metapkg/issues/10

Practical guidelines

!18

3. Get your new plugin registered on the plugin registry

4. Write tests for your plugin

5. Take advantage of free continuous integration platforms

Group B

!19

Start writing a plugin for your code

Material to be covered

• aiida-plugin-cutter

• get your new plugin registered

• how to test plugins

• Advanced example: aiida-siesta

• pre-commit hooks & IDEs

• aiida-siesta: Intro & plugin structure

Tutors

• Leopold Talirz

• Oscar Arbelaez

• Daniele Tomerini

• Alberto Garcia

Recap

!20

• aiida plugins are python packages  
that extend existing AiiDA interfaces  
through python entry points

• when developing a new plugin

1. start simple

2. don't start from scratch

3. use git for version control  
& github for collaboration

4. write tests!

AiiDA & Materials Cloud Teams

!21

Giovanni 
Pizzi

(EPFL)

Boris 
Kozinsky
(BOSCH)

Daniele 
Tomerini

(EPFL)

Valeria 
Granata
(EPFL)

Nicola 
Marzari
(EPFL)

Snehal P. 
Kumbhar

(EPFL)

Leonid 
Kahle
(EPFL)

Sebastiaan 
P. Huber

(EPFL)

Marco
Borelli
(EPFL)

Elsa
Passaro
(EPFL)

Thomas
Schulthess

(ETHZ,CSCS)

Leopold
Talirz
(EPFL)

Joost
VandeVondele

(ETHZ,CSCS)

Aliaksandr
Yakutovich

(EPFL)

Contributors for the 30+ plugins: Quantum ESPRESSO, Wannier90, CP2K, FLEUR, YAMBO, SIESTA, VASP, …

Contributors to aiida_core and former AiiDA team members — Valentin Bersier, Jocelyn Boullier, Jens Broeder, Andrea
Cepellotti, Fernando Gargiulo, Dominik Gresch, Conrad Johnston, Rico Häuselmann, Eric Hontz, Christoph Koch, Espen Flage-
Larsen, Antimo Marrazzo, Andrius Merkys, Nicolas Mounet, Tiziano Müller, Riccardo Sabatini, Ole Schütt, Phillippe Schwaller,

Andreas Stamminger, Martin Uhrin, Spyros Zoupanos

The CSCS support teams

Berend 
Smit

(EPFL)

Casper
Welzel
(EPFL)

Oscar D.
Arbelaez

(EPFL)

