
Writing workflows in AiiDA
Sebastiaan P. Huber

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance

Keeping data provenance is important…

2

...but imagine having to manually link everything up

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance

So how exactly is provenance automatically stored?

3

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance: calculations
Imagine the following simple arithmetic problem:

Add two numbers and multiply the sum by third

4

Just apply the calcfunction decorator

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance: calculations
Now we just call it like a normal function while passing storable types

5

The provenance is automatically stored in the database

Directed Acyclic Graph

▪ Directed: inputs go in
outputs come out

▪ Acyclic: causality principle
forbids an output being
its own input

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance: external codes
But not all code is well-suited as Python code:

What about running external codes through AiiDA?

6

Implementation is different as it requires a plugin,
but running very similar...

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance: external codes
Generated provenance similar to that of calculation function

7

▪ Can be run on remote machines through job scheduler

▪ Implementation independent of job scheduler

▪ To change machine, just change the ‘code’ input

▪ Many can be run in parallel by submitting to the daemon

▪ Has additional output

node containing the

retrieved output files

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance: workflows
Let’s go back to the first add-multiply example

Individual sequence of calculations recorded...
... but not the ‘how’ or ‘why’

8

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance: workflows
Work functions can be used to store logical provenance

9

We can look at the logical provenance to
‘hide’ the complexity

Or ignore it to retrieve the original data
provenance

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance: workflows
Work chains achieve the same but save progress in between steps

10

Only difference with work function solution is
node type

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance: workflows
Work chains provide many advantages over work functions:

▪ Many can be run in parallel by submitting to the daemon

▪ Progress is saved between steps in checkpoints

▪ Process specification gives succinct but clear summary

▪ Captures the scientific knowledge and can be re-run

▪ Can be re-used as building block in more complex workflows

11

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Automated provenance: losing provenance
Workflows cannot create new data.
Doing so anyway, will cause loss of provenance
Take first example: add two numbers and multiply with third...
... but now compute the product inside the work function

12

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Why a difference between calculations and workflows

Since workflows can return, they can also return their inputs

13

This breaks the acyclity and therefore the DAG

Two clearly distinct types of processes

CALCULATIONS WORKFLOWS

Can create new data Can call other processes
Can return existing data

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Provenance design: an overview 14

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Provenance design: an overview 15

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Processes and nodes 16

The engine runs processes and stores a corresponding node in the database

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Launching processes 17

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Running will block the interpreter, submitting will not as the daemon will take care of it

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Launching processes 18

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Run blockingly in the current interpreter

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Launching processes 19

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Run variants to get the process node or pk in addition to the result

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Launching processes 20

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Variants are available as attributes on run launcher requiring only single import

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Launching processes 21

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Submit to the daemon to immediately regain control of the interpreter

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Launching processes 22

Four processes launchers with identical interface

run Run blockingly and return result
run_get_node Run blockingly and return result + node
run_get_pk Run blockingly and return result + pk
submit Submit to daemon and return node

Can use dictionary with keyword expansion in case of many inputs

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Command line interaction: verdi process 23

Your one-stop-shop for inspecting and interacting with processes

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Command line interaction: verdi process 24

Your one-stop-shop for inspecting and interacting with processes

verdi process list: list active and terminated processes

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Command line interaction: verdi process 25

Your one-stop-shop for inspecting and interacting with processes

verdi process status: tree representation of call stack

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Command line interaction: verdi process 26

Your one-stop-shop for inspecting and interacting with processes

verdi process report: complete report of log messages and scheduler stdout/stderr

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

er

Command line interaction: verdi process 27

Your one-stop-shop for inspecting and interacting with processes

verdi process pause: pause an active process

verdi process play: resume a paused process

verdi process pause/play/kill: fails if process is already terminated

verdi process kill: kill an active process

A
iiD

A
Vi

rtu
al

 T
ut

or
ia

l -
 J

ul
y

20
20

S
eb

as
tia

an
 P

. H
ub

erDevelopers

AiiDA contributors

Th
e

M
at

er
ia

ls
 C

lo
ud

A

nd
 A

iiD
A

 t
ea

m
s

Giovanni
Pizzi

(EPFL)

Nicola
Marzari
(EPFL)

Thomas
Schulthess

(ETHZ,CSCS)

Joost
VandeVondele

(ETHZ,CSCS)

Berend
Smit

(EPFL)

Leonid
Kahle
(EPFL)

Sebastiaan
P. Huber

(EPFL)

Marco
Borelli
(EPFL)

Valeria
Granata
(EPFL)

Casper W.
Andersen

(EPFL)

Carl Simon
Adorf
(EPFL)

Snehal P.
Kumbhar

(EPFL)

Elsa
Passaro
(EPFL)

Francisco F.
Ramirez
(EPFL)

Leopold
Talirz
(EPFL)

Aliaksandr
Yakutovich

(EPFL)

Marnik
Bercx
(EPFL)

Chris
Sewell
(EPFL)

28

