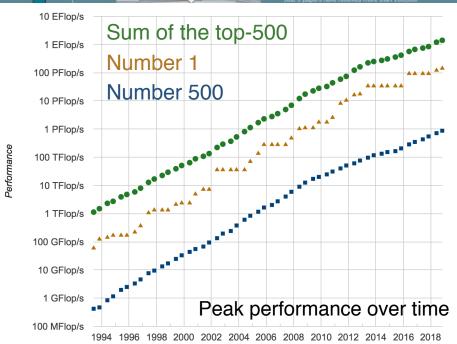
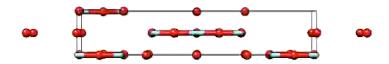


Introduction to AiiDA

Writing reproducible workflows using AiiDA May 21st-24th, 2019, Lausanne



Accuracy and predictive power of quantum engines


150,000x increase in the past 20 years

1 month (1998)

10 seconds (2018)

Result: materials design and discovery via high-throughput computations

Leverage supercomputers to compute and predict materials' properties

Aim: Compute properties for all of them (and even new, invented ones) and discover novel functional materials

Open Science Platform: definition

- Our definition of an Open Science Platform [1]:
 - Open simulation codes
 - Open architecture to manage simulations and open workflows
 - Support for Open Data, Data Management Plans and FAIR-compliant sharing
 - Straightforward availability of the tools, with curated open-data services enabling turn-key workflows (pseudopotential libraries, ...)

[1] Pizzi G. (2018) Open-Science Platform for Computational Materials Science: AiiDA and the Materials Cloud.

In: Andreoni W., Yip S. (eds), Handbook of Materials Modeling (Springer, Cham).

Our goal

Build an open-science infrastructure with computational services offered to scientific, industrial community and beyond

Like a synchrotron, but for open and reproducible simulations

Our two core infrastructures

AiiDA as the "operating system" to manage, automate and store simulations and their results

and

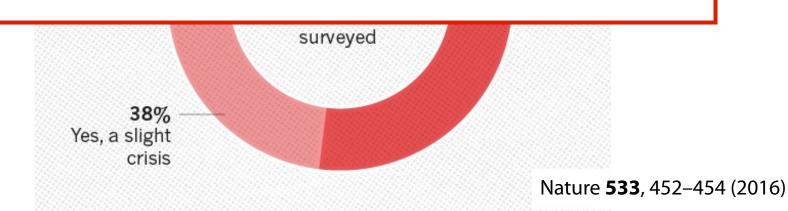
Materials Cloud as the open-science dissemination portal and cloud simulation platform

OPEN SCIENCE PLATFORM:

G. Pizzi et al., Comp. Mat. Sci. 111, 218-230 (2016)

Reproducibility: a cornerstone of the scientific method

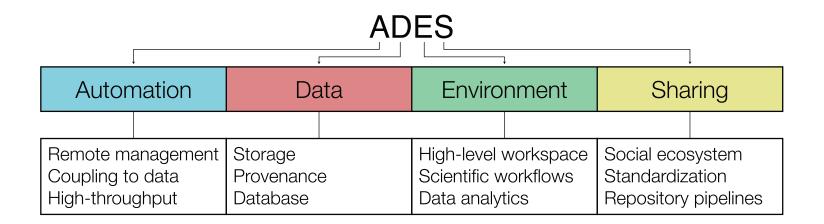
IS THERE A REPRODUCIBILITY CRISIS?

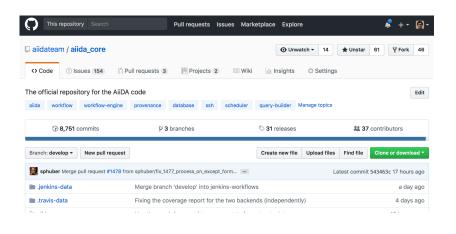

7% 52%
Don't know Yes, a significant crisis

No excuses in computational science

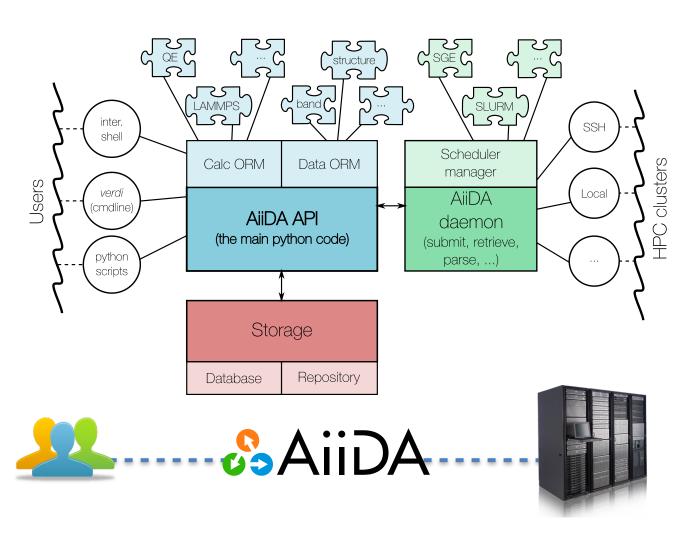
30%

We can and **must** be fully reproducible


CHALLENGE #2: make open-science **easier**



AiiDA development timeline


G. Pizzi et al., Comp. Mat. Sci. 111, 218-230 (2016)

http://www.aiida.net

AiiDA

Main features

- Python (2.7 & 3.6) infrastructure
- SQL database backend, access via a Python ORM
- Local connection to clusters, or via ssh using a python API
- Interface to various job schedulers (SGE, Torque, LSF, PBS Pro, SLURM, ...)
- Event-based daemon with remote management and workflow execution manager
- REST APIs using Flask to expose one own's data
- Plugin management system and extended code support
- Easy sharing of the results with other users in the community

AiiDA submission

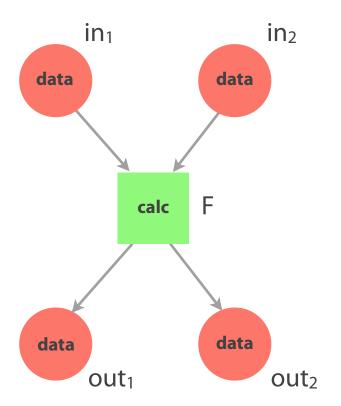
```
code = load code('pw-6.3@daint-mr25')
builder = code.get builder()
builder.metadata.options = {
    'max_wallclock_seconds': 600,
    'resources': {"num machines": 2}}
Structure = DataFactory('structure')
structure = Structure(ase = read('TiO2.cif'))
Dict = DataFactory('dict')
parameters = Dict(dict={
    'CONTROL': {
        'calculation': 'scf',
        'restart mode': 'from scratch'},
    'SYSTEM': {'ecutwfc': 40.}})
Kpoints = DataFactory('array.kpoints')
kpoints = Kpoints(kpoints mesh = [4,4,4])
builder.structure = structure
builder.parameters = parameters
builder.kpoints = kpoints
builder.pseudos = get_pseudos_from_family(structure,
'SSSP efficiency v1.0')
```

Switch computers in one line supports different schedulers, version of codes, ...

Define (only) necessary inputsInterface designed by plugin

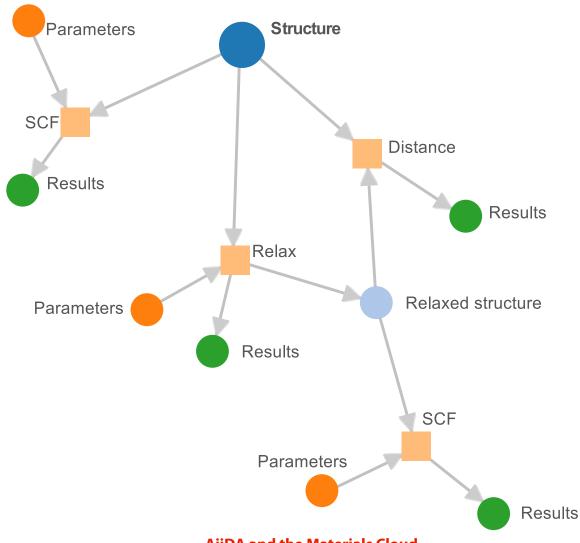
Inputs stored in the DB, and handing over to the daemon

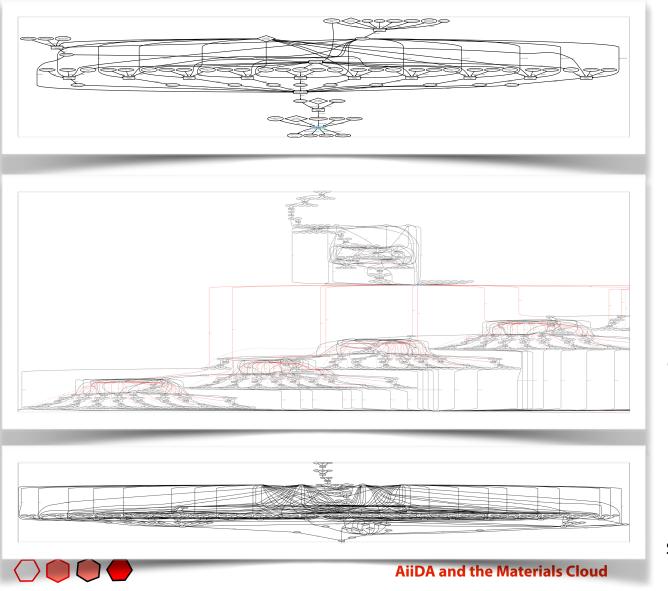
aiida.engine.submit(builder)


Storage and provenance

- Calculated properties: result of complex, connected calculations
- How do we store simulations preserving the connected structure?
- Inspiration from the open provenance model
- Any calculation: a function, converting inputs to outputs:

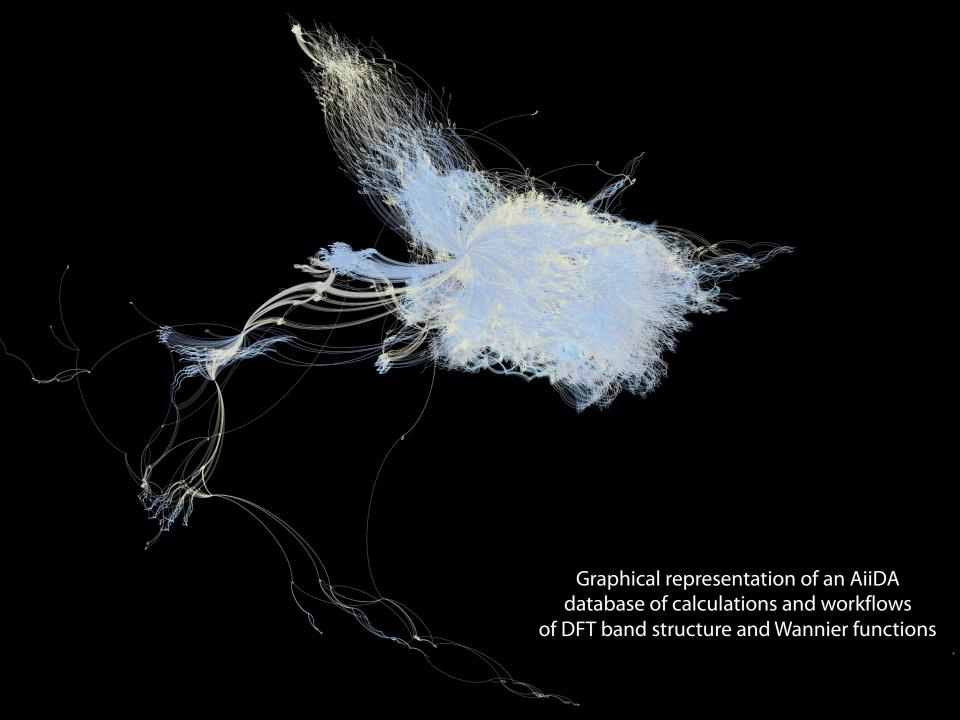
$$out_1$$
, $out_2 = F(in_1, in_2)$


- Each object is a node in a graph, connected by directional labeled links
- Output nodes can be used as inputs


Data provenance: Directed Acyclic Graphs

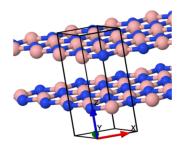
"Simple" graphs of workflows for a single material

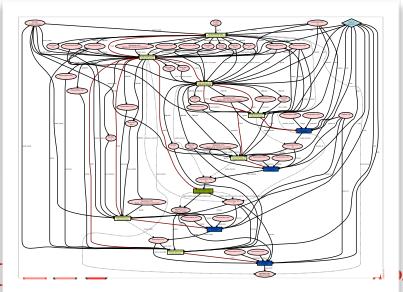
Phonon dispersion

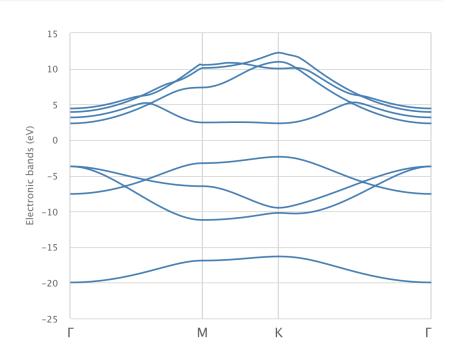

(atom oscillations around equilibrium positions: thermal transport, electronic mobility, ...)

Molecular dynamics of Lithium in a solid electrolyte

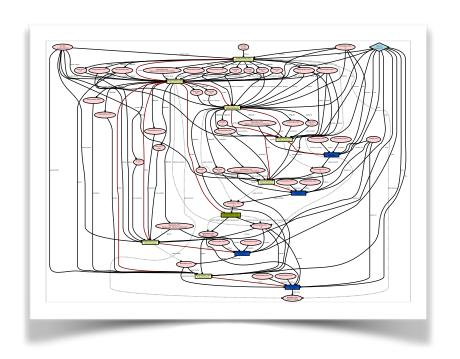
(Discover novel, safe and efficient electrolytes for Libatteries)

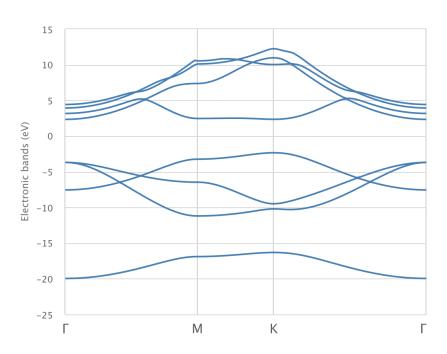

Elastic constants


(response of materials to stresses and deformations)



Turn-key workflows in AiiDA


- Given a material, we often need to compute advanced quantities
- These are often non-trivial and result from a complex workflow



Turn-key workflows in AiiDA

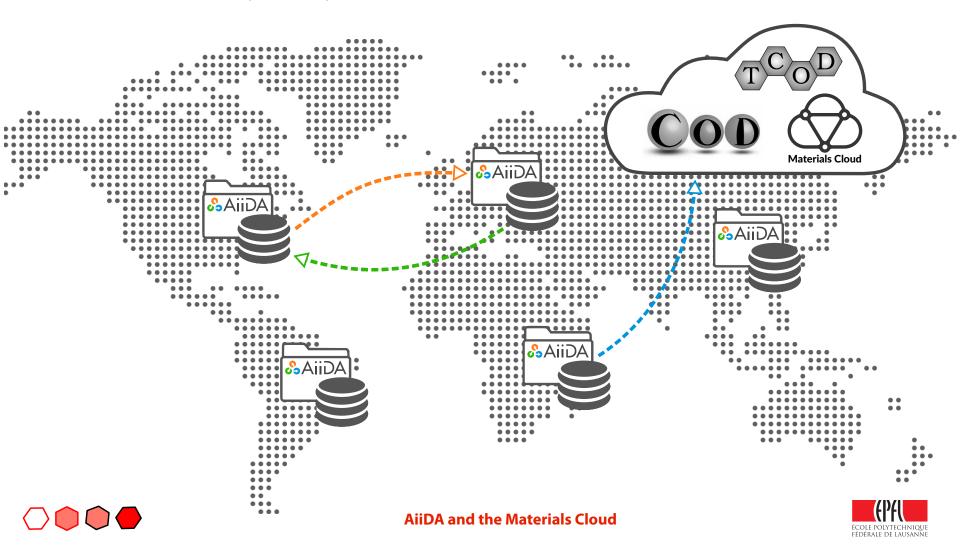
- The AiiDA provenance graph allows to know how the structure was computed and to reproduce that single specific calculation: log of "what happened in the past"
- We need also an **easy way to re-run the same calculation again** with different parameters or for a different material: **turn-key workflows**

Turn-key workflows in AiiDA

```
class PwBandsWorkChain(WorkChain);
   @classmethod
   def define(cls, spec):
        spec.input('code',
                   valid type=Code)
        spec.input('structure',
                   valid_type=StructureData)
        spec.input('pseudo_family',
                   valid type=Str)
        spec.outline(
            cls.setup,
            cls.validate inputs,
            if (cls.should do relax)(
                cls.run relax,
            cls.run_seekpath,
            cls.run scf,
            cls.run_bands
            cls.resul
```

- "Operating system" for all calculations
- Automatic provenance tracking in the DB
- Control provenance granularity store level of detail relevant to the workflows
- Progress checkpointing
 restart from arbitrary step, retry on failure, allows
 to shut down daemon and continue later
- Easy debugging, self-documenting

```
• Turn-key solution:
```


```
PwBandStructureWorkChain.run(
    code=Code.get_from_string(
        'qe-pw-6.2.1@localhost'),
    structure=StructureData(
        ase=ase.build.bulk('Al')),
    pseudo_family=Str('sssp-pbe-efficiency'))
```


Sharing in AiiDA: data and graphs

- Private AiiDA instances
- UUIDs to uniquely identify nodes
- Data can be shared to other AiiDA repositoriesor to online repositories

Sharing in AiiDA: codes, plugins and workflows

Calculation

Data

Parsers

Transport and scheduler

Workflows

Importers & exporters

AiiDA plugin registry

Calculations 62 plugins in 25 entries

Parsers 55 plugins in 25 entries

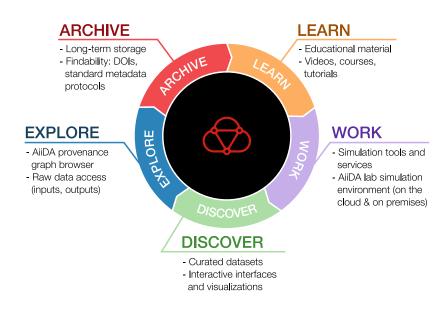
Data 24 plugins in 13 entries

Workflows 53 plugins in 11 entries

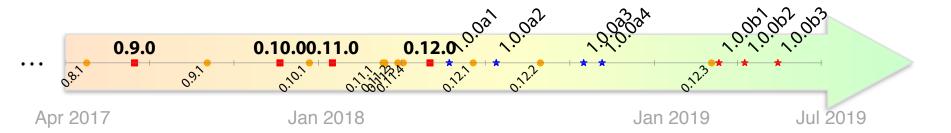
Other 40 plugins in 12 entries

- Plugins are collected in the AiiDA plugin registry
- Over 60 different executables from 25 different code packages currently supported, with over 50 workflows
- Many are community-contributed

https://aiidateam.github.io/aiida-registry/



OPEN SCIENCE PLATFORM:


https://www.materialscloud.org

AiiDA (recent) timeline

- AiiDA development started from scratch in late 2013, from earlier versions from Boris Kozinsky (BOSCH) and Giovanni Pizzi and Andrea Cepellotti in EPFL
- AiiDA 0.12 released mid 2018, last major release before 1.0
 - Still supported, 0.12.3 released in March 2019
- Since 2018, over 1 year of development into AiiDA 1.0, the next-generation AiiDA
- You will be using 1.0.0 beta 3, already good for production
- v1.0 official release scheduled in the summer
 - Roadmap towards v1.0: <u>https://github.com/aiidateam/aiida_core/wiki/AiiDA-release-roadmap</u>
- If you like technical details: follow project #14 on the GitHub page for the remaining v1.0 issues: https://github.com/aiidateam/aiida_core/projects/14

AiiDA v1.0 major improvements

Improved design of provenance model

 Formalisation of new type of links (create, return, call, input) of the type of nodes (workflows vs. calculations) and which links are allowed

Completely redesigned engine for high-throughput and performance

Event-based, super fast, scalable

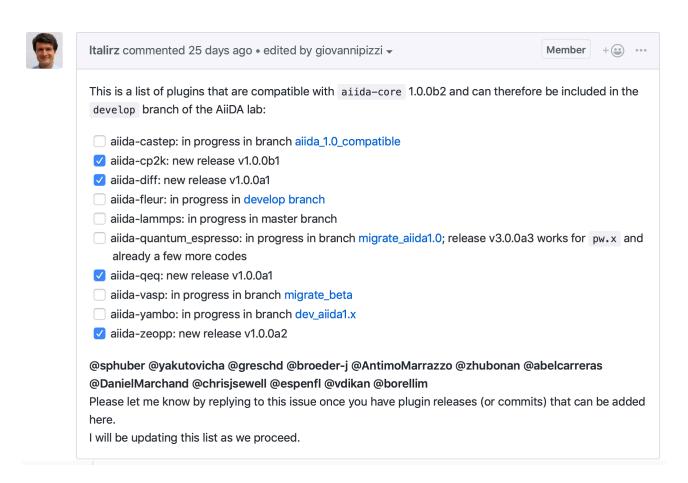
New daemon

- Multiple daemons per installation possible
- Multiple workers per daemon

Significantly improved command-line interface

homogenised, with tab-completion, easy to extend

AiiDA v1.0: the time it took


- It took more than 1 year because
 - The engine has been completely redesigned to ensure **high-throughput** capabilities and performance (~50'000 processes/hour possible)
 - New engine being heavily tested, DB backend being optimised
 - We had to redesign the provenance model
 - We try to minimise impact for users
 - Change the Python API only if needed (and discussions involved)
 - Implement automatic migrations for your databases (with tests)
 - Rewrite documentation (and prepare tutorial!)
 - Full python2 + python 3 support
 - We want to fix all critical bugs before v1.0 (only few remaining)
 - We want most of the plugins to be ready to work with AiiDA 1.0
 - 1-week workshop in March 2019 in EPFL, ~25 plugin developers

AiiDA v1.0 plugin readiness

 You can follow the state on this issue of the AiiDA lab metapackage: https://github.com/aiidalab/aiidalab-metapkg/issues/10

After v1.0 stabilisation

- We are now in a phase (and will stay for a few months after the release of v1.0)
 where we focus on stabilising the code rather than adding new features,
 unless critical
- Some of the planned features afterwards:
 - **Drop python2 support** (not earlier than end of 2019; probably early 2020)
 - Improved file repository management (compression and packing of files on disk, possibility of storing on object store)
 - Improve import/export interface (towards a push/pull mechanism rather than only export-file based)
 - ...



AiiDA-powered research projects

- Questionnaire on AiiDA mailing list
 - 27 research projects
 - 25 plugins

Country of affiliation

Project status: published

Project title	DOI		
Two-dimensional materials from high- throughput computational exfoliation of experimentally known compounds [1]	10.1038/s41565-017-0035-5		
Arsenene MOSFET [2]	10.1038/ncomms12585		
Polar discontinuities [3]	10.1038/ncomms6157		
Ideal adhesive and shear strengths of solid interfaces: A high throughput ab initio approach [4]	10.1016/j.commatsci. 2018.08.006		
Storing reproducible workflows in the Theoretical Crystallography Open Database [5]	10.1186/s13321-017-0242-y		
Ab-initio studies for battery materials design [6]	10.1103/PhysRevMaterials. 2.103805		
SSSP Pseudopotential libraries [7]	10.1038/s41524-018-0127-2		
Electronic and optical properties of doped TiO ₂ by many-body perturbation theory [8]	10.1103/PhysRevMaterials. 3.045401		

- [1] N. Mounet et al., Nat. Nanotech. 13, 246 (2018)
- [2] G. Pizzi et al., Nat Comm. 7, 12585 (2016)
- [6] D. Gresch et al., Phys. Rev. Materials 2, 103805 (2018)
- [3] M. Gibertini et al., Nat. Comm. 5, 5157 (2014)
- [7] G. Prandini et al., npj Comp. Mat. 4, 72 (2018)

[5] A. Merkys et al., J. Cheminf. 9, 56 (2017)

[4] P. Restuccia et al., Comp. Mat. Sci. 154, 517 (2018) M. O. Atambo et al., Phys. Rev. Mat. 3, 045401 (2019)

Project status: simulations completed

Project title	Contact		
A high-throughput search for new solid-state electrolytes for Li-ion batteries	Leonid Kahle, EPFL		
Applicability of tail-corrections in the molecular simulations of porous materials	Kevin Jablonka, EPFL		
Determining interface structures between fluorite and pervoskite materials	Bonan Zhu, University of Cambridge		
Lattice thermal conductivities of materials	Yue-Wen Fang, Kyoto University		
Siesta LDA pseudo test	Emanuele Bosoni, Trinity College Dublin		
Gas adsorption in covalent organic frameworks	Daniele Ongari, EPFL		
Ab-initio studies for battery materials design	Andreas Stamminger, Bosch		

raspa2

zeo++

raspa2 zeo++

Project status: underway

Project title	Contact		
Transferability of Machine Learning Models for Complex Properties of Porous Materials	Kevin Jablonka, EPFL		
Systematic study of the Atomic Self Interaction Correction	Emanuele Bosoni, Trinity College Dublin		
High-Throughput simulations of Complex Band Structures	Emanuele Bosoni, Trinity College Dublin		
3DD	Sebastiaan Huber, EPFL		
High-throughput Investigation of the Effect of Impurities on the Transport Properties of Topological Insulators	Philipp Rüssmann FZ Jülich		
Graphene adhesion on surfaces: a van der Waals density functional study	Karim Elgammal, KTH		
Simulation of Water Isotherms	Kevin Jablonka, EPFL		
Flat-land nanoelectronics	Víctor García, University of Oviedo		
High throughput phonon calculation	Togo Atsushi, Kyoto University		
GW convergence workflows	Miki Bonacci, Unimore		

Contacts

Website: http://www.aiida.net

Docs: http://aiida-core.readthedocs.io

Git repo: https://github.com/aiidateam/aiida_core/

Plugin registry: http://aiidateam.github.io/aiida-registry

https://www.facebook.com/aiidateam

@aiidateam

Materials Cloud: http://www.materialscloud.org

- AiiDA lab: http://aiidalab.materialscloud.org

- **Archive**: http://archive.materialscloud.org

Quantum Mobile: http://www.materialscloud.org/work/guantum-mobile