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Outline

A. Background in DFT

B. Background in ML-DFT

C. Machine-learned KS kinetic energy of molecules (3D)

D. E\Aac):hine-learning of XC for strongly correlated solids
1D).

E. Can exact conditions help us learn?
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The electronic structure problem

« Use atomic units

* Born-Oppenheimer
approximation

«  Wavefunctions
antisymmetric and
normalized

* Only discuss ground-
state electronic
problem here, but
many variations.

« All non-relativistic,
non-magnetic here

Kieron Burke

Hamiltonian for N electrons in the presence of external potential v(r):
H=T+ Ve + V,

where the kinetic and elec-elec repulsion energies are

1N
EE_: & Zz\r,—rﬂ
= i=1 j#i
and difference between systems is N and the one-body potential
A N
V = Z v(r,-)
i=1

Often v(r) is electron-nucleus attraction

Zo,
v(r) = _Z Ir — R,

where a runs over all nuclei, plus weak applied E and B fields.

(T+Ve+VIV=FEV E=min(V|T + Vee + VW)
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[ Constrained search proof

© Rewrite variational principle (Levy 79):

E = muin(\llﬁ'—l— Vie + VW)

min {F[n] —|—/d3r v(r)n(r)}

where

Fln] = min(V|T 4+ Ve|W)
V—n

» The minimum is taken over all positive n(r) such that [ d®r n(r) = N

@ The external potential v(r) and the hamiltonian H are determined to
within an additive constant by n(r)

@ P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).
@ M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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KS equations (1965)

Define fictitious non-interacting electrons satisfying:

1 N
{57 umom=go,  SlamP-
j=1

where vg(r) is defined to yield n(r).

Define Ty as the kinetic energy of the KS electrons, U as their
Hartree energy and

F: T+Vee:Ts+U+EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

0Exc

VS(r =V I‘) +/d3 (r/) _|' VXC[n](r) VXC(r) - 5n(r)

Knowing Exc[n] gives closed set of self-consistent equations.
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{ Today’s commonly-used functionals }

* Local density approximation (LD# £ = 4, [ ' ()
- UseS Only n(r) at a pOint. Ag = —(3/4)(3/m)/3 = —0.738

* Generalized gradient approx (GGA)

— Uses both n(r) and [Vn(r)l
— Should be more accurate, corrects overbinding of LDA
— Examples are PBE and BLYP

* Hybrid:
— Mixes some fraction of HF
— Examples are B3LYP and PBEO
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A few recent applications

Computers, codes, algorithms always improving
Making bona fide predictions

E.g., a new better catalyst for Haber-Bosch process
(fixing’ ammonia from air) was predicted after
about 25,000 failed experiments (Jens Norskov’s
group)

Now scanning chemical and materials spaces using
big data methods for materials design (materials
genome project).

World’s hottest superconductor (203K) is hydrogen
sulfide, predicted by DFT calculations, then made.



[ Breadth of applications
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Computational exfoliation

nature ARTICLES
nanOteChnOIOgy https://doi.org/10.1038/541565-017-0035-5

Two-dimensional materials from high-throughput
computational exfoliation of experimentally
known compounds

Nicolas Mounet®™, Marco Gibertini©®', Philippe Schwaller®?, Davide Campi’, Andrius Merkys ©'2,
Antimo Marrazzo©@’, Thibault Sohier®1, Ivano Eligio Castelli®’, Andrea Cepellotti’, Giovanni Pizzi ®’
and Nicola Marzari™

Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic
applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D
materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D
compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria.
High-throughput calculations using van der Waals density functional theory, validated against experimental structural data
and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are
either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural proto-
types and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset
of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and
antiferromagnetic systems, including half-metals and half-semiconductors.
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Prediction of room-temperature spintronics

Prediction of a room-temperature and switchable Kane-Mele quantum spin Hall
insulator

Antimo Marrazzo,!" * Marco Gibertini,! Davide Campi,’ Nicolas Mounet,' and Nicola Marzari': T

Y Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and

Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, 1015, Switzerland
(Dated: December 12, 2017)

Fundamental research and technological applications of topological insulators are hindered by
the rarity of materials exhibiting a robust topologically non-trivial phase, especially in two dimen-
sions. Here, by means of extensive first-principles calculations, we propose a novel quantum spin
Hall insulator with a sizeable band gap of ~0.5 eV that is a monolayer of Jacutingaite, a natu-
rally occurring layered mineral first discovered in 2008 in Brazil and recently synthesised. This
system realises the paradigmatic Kane-Mele model for quantum spin Hall insulators in a potentially
exfoliable two-dimensional monolayer, with helical edge states that are robust even beyond room
temperature and that can be manipulated exploiting a unique strong interplay between spin-orbit
coupling, crystal-symmetry breaking and dielectric response.
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Italian opera?

Kieron Burke

Merkys et al. J Cheminform (2017) 9:56 . .
DOI 101186)513321.017.0242-y ® Journal of Cheminformatics

RESEARCH ARTICLE Open Access
@CrossMark

A posteriori metadata from automated
provenance tracking: integration of AiiDA
and TCOD

Andrius Merkys'?"®, Nicolas Mounet', Andrea Cepellotti', Nicola Marzari', Saulius Grazulis?*
and Giovanni Pizzi'

Abstract

In order to make results of computational scientific research findable, accessible, interoperable and re-usable, it is
necessary to decorate them with standardised metadata. However, there are a number of technical and practical chal-
lenges that make this process difficult to achieve in practice. Here the implementation of a protocol is presented to
tag crystal structures with their computed properties, without the need of human intervention to curate the data. This
protocol leverages the capabilities of AiiDA, an open-source platform to manage and automate scientific computa-
tional workflows, and the TCOD, an open-access database storing computed materials properties using a well-defined
and exhaustive ontology. Based on these, the complete procedure to deposit computed data in the TCOD database

is automated. All relevant metadata are extracted from the full provenance information that AiiDA tracks and stores
automatically while managing the calculations. Such a protocol also enables reproducibility of scientific data in the
field of computational materials science. As a proof of concept, the AiiDA-TCOD interface is used to deposit 170 theo-
retical structures together with their computed properties and their full provenance graphs, consisting in over 4600
AiiDA nodes.

Keywords: DFT, Reproducibility, Provenance, Open data, Ontology, Materials science
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Electrochemistry

PHYSICAL REVIEW MATERIALS 1, 025402 (2017)

Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes

Aris Marcolongo and Nicola Marzari

Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL),

Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
(Received 16 January 2017; published 5 July 2017)

A microscopic understanding of fast ionic transport is fundamental to design novel solid-state electrolytes. We
address the role of correlations in these systems and study in detail the tracer and charge diffusion coefficients,
deriving a novel inequality between these two quantities. We investigate the failure of the Nernst-Einstein and the
physical consequences of a nontrivial Haven ratio with extensive first-principles molecular dynamics in the fast
ion conductor Li;(GeP,S,. Last, we show that the approximate tracer diffusion still provides accurate activation
free energies.

DOI: 10.1103/PhysRevMaterials.1.025402
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[ Perdew’s systematic approach to XC }

 |dea: Successively
refine
approximations

{ Use exaCt Condi‘tions ORBITALS

» Avoid fitting of
parameters to data
sets

* Each rung is more
sophisticated, but
costs more
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Big picture

Non-empirica
use of QM;
Perdew

TF theory
Lieb et al
Atoms

-

Empiricism
Exact Modern DFT Becke, Truhlar
conditions Kohn-Sham
Perdew, Lewy Exc[na,ny]

Astrophysics,
protein folding,
oil science,...

Materials
science

Condensed
matter physics
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DFT papers

kilopapers
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DFT: A Theory Full of Holes, Aurora Pribram-Jones, David A. Gross, Kieron Burke,
Annual Review of Physical Chemistry (2014).
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In reality...
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[ Machine learning in physical sciences }

* Explosion of interest in last 5 years

« Machine learning/big data/data science very
broad terms

* Some examples:

— Searching databases of materials calculations to find
optimal functionality

— Searching chemical compound space
— Accelerating sampling
— Designing interatomic potentials

Kieron Burke MARVEL lecture 17



ML interatomic potentials

PHYSICAL REVIEW MATERIALS 2, 013808 (2018)

Achieving DFT accuracy with a machine-learning interatomic potential:
Thermomechanics and defects in bee ferromagnetic iron

Daniele Dragoni,l’2 Thomas D. Daff,> Gdbor Cszinyi,3 and Nicola Marzari'
"Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL),
Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
2Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy
3Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom

® (Received 23 August 2017; published 30 January 2018)

We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe
complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case.
The training database includes total energies, forces, and stresses obtained from density-functional theory
in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments,
ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different
crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model
to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations.
There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent
by atomic configurations that were not part of the training set. We observe the benefit and the need of using
highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a
systematically improvable potential that can achieve the same accuracy of density-functional theory calculations,
but at a fraction of the computational cost.

DOI: 10.1103/PhysRevMaterials.2.013808
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[ Machine learning: Kernel ridge regression }

Powerful branch of artificial intelligence
» Essentially fitting and interpolating

* Maps problem into much higher-dimension
feature space, using a simple kernel

» Higher-dimension often means more linear
 Perform regression in feature space

* Project back to original problem

Kieron Burke MARVEL lecture 19



Kernel ridge regression }

® Kernel ridge regression (KRR). Given {Xj, fg}

- E:l k(X X) length scale
J:

\

k(x,x') = exp(—|x — x||*/(20%))

® Minimize:

M
=) (I )* + Al

g=1 \
noise level
a=(K+NI)"'f
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Fitting a simple function

Kieron Burke

noisy data
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[ Too high noise level: underfit

noise level = 50
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Medium noise level

noise level = 0.5
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Small noise level: overfit

Kieron Burke

4 noise level = 1le-6
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[ Cross validation

® Always optimize on samples not in the training set

{Xja fJ}

Train f(x) — lf\l,iél /() = il

Kieron Burke MARVEL lecture
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[ Cross validation

® Always optimize on samples not in the training set

{x;, f;} A1,01

Train f(x) — min i) — il
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More cross validation

® Always optimize on samples not in the training set

{xj, f}

Kieron Burke

/\53 05

Ay, 04

3,03

A2, 02

>‘1701
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Average over samples

® Always optimize on samples not in the training set

{Xj’ fj}

Kieron Burke

A5

A4, 04

A3, 03

A2, 09

)\1701

A,0 = median; {\;,0,}
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Medium noise level

noise level = 0.5

4 T !
® noisy data
--- ML °
3_ .
2t ° RO
¢.~\ I’
N 2
— ’ ~
OBt ®e° °. )/ |
= ’ N ¢
/' [N V4
al \\ I,.
’f’. ) .-_’
o@- |
[ o
_1_ _
~%.0 0.2 0.4 0.6 0.8 1.0
X

Kieron Burke

MARVEL lecture

29



[ Exact function and best fit

noise level = 0.46 (optimized via cross validation)

4
® noisy data
--- ML °
3| —— exact
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{ ML applications in electronic structure }

 Most with Klaus Mueller of TU Berlin,
computer science.

* ML now being applied directly to, e.g.,
molecular energies from geometries for
drug design, many by Matthias Rupp (FHI
Berlin).

* Qur efforts are focused on finding T.[n]
from examples, work by John Snyder

(Humboldt fellow at TU Berlin/MPI Halle)
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[ If only we knew the kinetic energy as a J
density functional

« The KS equations are solving the following
equation for us:

6TS — —U\Yr) — Uy N\I') — nir
i = ) — valnl(r) — vl (r)

* If we had an explicit approximation for
T¢[n], we could solve this directly.
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Basic idea: Orbital-free DFT

For a limited variety of one-body potentials, construct
kinetic energy functionals via ML that are sufficiently
accurate to do the job.

Typically, require accuracy of 1 kcal/mol =1.6 mHa=0.05
eV

For kinetic energy, also need functional derivative.

Most useful when multiple slightly different uses of
DFT, eg during an MD run.

Functional could be disposable, i.e., thrown away at
end of run.

Is completely non-local in general, so best advantage
when bonds break, as local functionals fail.



[ Demo problem in DFT

® N non-interacting same-spin fermions confined to |d box

® Define class of potential

v(x) = Za@ exp(—(x — b;)?/(2¢?))
® Represent the density on a grid with spacing Ax = 1/(G — 1)
e ML-DFA for KE:
M
=T 2 osking.n

k[n,n’]=exp (- | dx (n(x)-n"(x))2)/(252))

Kieron Burke MARVEL lecture
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Dataset

Kieron Burke

Generate 2000 potentials. Solve for up to 4 electrons.

MARVEL lecture
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Performance for T,

N M A o |AT| |AT]PY |AT|™
40 24 x107° 238 3.3 3.0 23.
60 1.0x107°> 95 1.2 1.2 10.
| 80 6.7x107°% 48 043  0.54 7.1
100 3.4x1077 43 0.15 0.24 3.2
150 2.5x 1077 33 0.060 0.10 1.3
200 1.7x1077 28 0.031 0.053 0.65
2 100 1.3x1077 52 0.13  0.20 1.8
3 100 20x10°7 74 0.12  0.18 1.8
4 100 1.4x10°" 73 0.078 0.14 2.3
1-47 400 1.8 x 107" 47 0.12  0.20 3.6

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kcal/mol

Kieron Burke
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[ functional derivative?

 Functionals are
defined on infinite-
Exact ML-DFA dimensional spaces

=p—v(T) «—> —mvnTA(n) = aj(n; —n)k(n;,n)

o) = a;/(*az) »  With finite

150f | : interpolation, can
always find bad

3 " /\ ﬂ{\ | directions
E; 0 /\/\/\ [\A
>

vvv T
75 V U U V f e Can we make a

_____ Bt cruder definition
that will work for
our purposes?
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Principal component analysis

Kieron Burke

1,
T A

1 n]l .

\/'
| P

Aj» X . i
J iN;i
<
1
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{ Projected functional derivative
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Lessons

Exact noise-free data infinitely available for

T.[n], every cycle of every KS calculation in the
world provides examples.

Need very accurate derivatives to get accurate
density from Euler equation.

Can find ways to bypass this.

Functionals can be made arbitrarily accurate
with sufficient data.

Finding Density Functionals with Machine Learning John C.
Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert Miiller,
Kieron Burke, Phys. Rev. Lett. 108, 253002 (2012)



Bond-breaking with ML }

* Performed many 1d
KS calculations of
diatomics as function |
of bond length, using =
LDA with soft- 7|
Coulomb repulsion,
including several with
more than 2
electrons

LiH

Orbital-free Bond Breaking via Machine Learning John C. Snyder,
Matthias Rupp, Katja Hansen, Leo Blooston, Klaus-Robert Miiller,
Kieron Burke, J. Chem. Phys. 139, 224104 (2013)
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Kevin’s paper: from functions to functionals

 Plot error as a
function of
hyperparameters

@ Curves have roughly the
same “valley” shape for all
Nt

@ Bottom of the valley is an
order of magnitude deeper
than the walls

* Repeat for fitting
f(x)= cos x

@ These valleys are nearly
identical in shape for
sufficiently large N7, which
indicates that this particular
feature arises in a systematic
manner as Nt increases

Understanding kernel ridge regression: Common behaviors from simple
functions to density functionals, Kevin Vu, John C. Snyder, Li Li, Matthias
Rupp, Brandon F. Chen, Tarek Khelif, Klaus-Robert Miiller, Kieron Burke,
International Journal of Quantum Chemistry 115, 1115--1128 (2015).
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Road map back to reality

Roadmap to 3d land

model selection, projected functional derivatives, OF-DFT

bond breaking, self-consistent densities

|d diatomics )

A E
\

A . . . . . . .
s, dimensionality, basis sets, representation, inversion symmetry

]
3d atoms, diatomics .

* full symmetries, scallng

C& 3d molecules

scalability, data accumulatlon .

ab-initio MD, active learning
Iarge systems, real applications

Kieron Burke MARVEL lecture
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Kieron Burke

D. Recent results

iy
[}

(¢

-
y

Felix Brockherde Li Li Tomas E. aker
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[ 2 New papers

* By-passing the KS equations with ML (acc Nat Comm)
— Felix Brockherde, Li Li, Klaus Muller, KB,...

— Avoids functional derivative
— Applied in 3D
— Still doing KS problem, T,[n]

* Pure Density Functional for Strong Correlations and the
Thermodynamic Limit Using Machine Learning. in Phys
Rev B.

— Li Li, Thomas E. Baker, Steven R. White and KB
— Do interacting functional (ie. Exact Ey()

— Do strong correlation

— Do thermodynamic limit

— Stillin 1d



Machine-learned approximations

. By-passing the Kohn-Sham equations with machine learning

» Felix Brockherde,!? Leslie Vogt,? Li Li,* Mark E. Tuckerman,? 5 ¢ Kieron Burke,”* * and Klaus-Robert Miiller®:&: *
! Machine Learning Group, Technische Universitit Berlin, Marchstr. 23, 10587 Berlin, Germany

3

4 2 Max-Planck-Institut fiir Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany

5 3 Department of Chemistry, New York University, New York, NY 10003, USA

6 4 Departments of Physics and Astronomy, University of California, Irvine, CA 92697, USA

7 ® Courant Institute of Mathematical Science, New York University, New York, NY 10003, USA
8 SNYU-ECNU Center for Computational Chemistry at NYU Shanghasi,

9 3663 Zhongshan Road North, Shanghai 200062, China

10 "Departments of Chemistry, University of California, Irvine, CA 92697, USA

11 8 Department of Brain and Cognitive Engineering, Korea University,

12 Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea

13 (Dated: January 31, 2017)

14 Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory
15 to solve electronic structure problems in a wide variety of scientific fields, ranging from materials
16 science to biochemistry to astrophysics. Machine learning holds the promise of learning the kinetic
17 energy functional via examples, by-passing the need to solve the Kohn-Sham equations. This should
18 yield substantial savings in computer time, allowing either larger systems or longer time-scales to
19 be tackled. However, attempts to machine-learn this functional have been limited by the need to
20 find its derivative. The present work overcomes this difficulty by directly learning the density-
21 potential and energy-density maps for test systems and various molecules. Both improved accuracy
2 and lower computational cost with this method is demonstrated by reproducing DFT energies for
23 a range of molecular geometries generated during molecular dynamics simulations. Moreover, the
2% methodology could be applied directly to quantum chemical calculations, allowing construction of
25 density functionals of quantum-chemical accuracy.
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By-passing KS J
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Performance of ML for HK map: Box problem

| ML-OF | ML-HK (grid) | ML-HK (other)
| AE AEp AEp | AE AEp AER" | AEp (Fourier) AEp (KPCA) |

M | MAE max MAE max MAE max| MAE max MAE max MAE max| MAE max MAE max

200 7.7 47 7.7 60 8.8 87 3.5 27 0.76 8.9 9.7 70 | 0.58 8 0.15 2.9

50| 1.6 30 1.3 7.3 1.4 31 1.2 71 0079 092 027 24| 0.078 0.91 0.011 0.17
100f 0.74 17 0.2 26 0.75 171 019 21 0.027 043 0.18 24| 0.031 0.42 0.0012  0.028
200 0.17 29 0.039 06 0.17 29| 0.042 0.59 0.0065 0.15 0.02 0.46| 0.017 0.14 0.00055 0.015

Table I. Energy errors in kcal/mol for the 1-D data set for various M, the number of training points. For definitions, see text.

Understanding and reducing errors in density functional calculations Min-
Cheol Kim, Eunji Sim, Kieron Burke, Phys. Rev. Lett. 111, 073003 (2013).
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[ Convergence of different HK maps }

102

I | I I I I |
®@® OF V-V HK Fourier
¢ ¢ HK KPCA

AFEp (kcal/mol)

20 40 60 &80 100 120 140 160 180 200

Number of training points M
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{ Error for H,

E (kcal/mol)
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H,O

ML-KS errors ML-HK errors
110 ' 0.10
105 0.01
% 0.00
—0.01
100
~0.10
0.93 0.96 0.99 1.02 0.93 0.96 0.99 1.02
Absolute errors ML-HK
0.5 T T
6.4
04 F 5.6
N 4.8
2 0.3 | 4.0
| X
= 3.2
2 0.2 F 2.4
1.6
0.1 F 0.8
0.0 - 0.0
0.0 0.1 0.2 0.3 0.93 0.96 0.99 1.02
ML-HK R (A)
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MD simulations testing ML method

o

30 T T T

15 ) .
10 b

5 | L L
0 50 100 150 200

Simulation time (100fs)

E (kcal/mol)

c

14 T T T

E (kcal/mol)
(-}

0 50 100 150 200
Simulation time (100fs)

2]

S
2 ) 1 1 1

0 10 20 30 40 50
Simulation time (5fs)

E (kcal/mol)

Figure 3. Energy errors of ML-HK along MD trajectories. PBE values in blue, ML-HK values in red. a. A 2 ps classical
trajectory of benzene. b. A 2 ps classical trajectory of ethane. e¢. A 0.25 ps ab-initio trajectory of malonaldehyde. The ML
model correctly predicts energies during a proton transfer in frames 7 to 15 without explicitly including these geometries in the
training set.

Benzene Ethane Malonaldehyde
Training trajectories MAE max MAE max MAE max
300K 0.395742 1.92642 0.212137 1.33947
300K + 350K 0.260517 1.76190 0.236088 1.38227 0.206795 0.725515
300K + 400K 0.370876 2.1162 0.101054 0.576107

Table V. Errors (AEp in kcal/mol) on the MD datasets for different training trajectory combinations.
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Accuracy of densities

PBEb PBEb —
0.0135
0.0075
0.0015
-0.0045
-0.0105
-0.0165
e. PBEb

040 0015 0.0004700
0.0003845
032 0010 0.0002991
0,005 0.0002136
024 0.0001282
0.000 0.0000427
0.16 - 0.0000427
0,005 - 0.0001282
0.08 - 0.0002136
-0.010 - 0.0002991
0.00 - 0.0003845
-0.015 - 0.0004700

Figure 4. The precision of our density predictions using the Fourier basis for ML-HK for the molecular plane of benzene. The
plots show a. the difference between the valence density of benzene when using PBE and LDA functionals at the PBE optimized
geometry. b. error introduced by using the Fourier basis representation. c. error introduced by the nM [v] density fitting (a.
- ¢. on same color scale). d. the total PBE valence density e. the density differences along a 1-D cut of a. - c. f. the density
error introduced with the ML-HK map (same data, but different scale, as in c.).
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B175: By-passing the Kohn-Sham equations with machine learning Felix Brockherde,
Leslie Vogt, Li Li, Mark E Tuckerman, Kieron Burke, Klaus-Robert MRuller, (to appear in
KierfNattiee Communications) (2017).  MARVEL lecture 54



http://arxiv.org/abs/1609.02815

[ Lessons }

* Our 1d gradient methods become prohibitively
expensive in 3d.

Instead of using T[n], learn n[v](r).
* Much smarter than learning E[v]
* Works for H, and H,O and ...

 ..MD of malonaldehyde using ML forces with
Leslie Vogt and Mark Tuckerman.



C. ML for the exact functional

Kieron Burke
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[ 1d electronic structure }

» Use DMRG to solve continuum problems in 1d.

* Much success in past, showing failures of DFT
approximations for strong correlation.

* Here we use DMRG to generate much data of
exact densities and energies

e All restricted to 1d.

Guaranteed Convergence of the K(.)hn—S.ham Equations One-Dimensional Continuum Electronic Structure with the
e O Wagner, E. M. Stoudenmire, Kieron Burke, Steven Density-Matrix Renormalization Group and Its Implication.
R. White, Phys. Rev. Lett. 111, 093003 (2013). for Density-Functional Theory E.M. Stoudenmire, Lucas O.
Wagner, Steven R. White, Kieron Burke, Phys. Rev. Lett.
1 109, 056402 (2012).



[ ML on exact chains of 1d H

* We train and test a machine learning F[n], the
universal part of the electronic density
functional, to within quantum chemical
accuracy. We
— bypass the standard Kohn-Sham approach

— include the strong correlation of highly-stretched
bonds

— create a model for the infinite chain limit.

Kieron Burke MARVEL lecture 58



Convergence for H,

Kieron Burke
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[ Vital issue in ML: Representation of data }

« We want to calculate F[n] sufficiently accurately
to solve Euler equation directly for the density.

+ Have all those problems with functional
derivative.

* Amount of data needed explodes as chain
length increases.

* Need better representation for the data.
* Li's thesis problem.
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[ Facial recognition via PCA }

- ."
N4 é (%! LAY

Kieron Burke MARVEL lecture 61




Mean face

Kieron Burke
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Plus one principal component

Kieron Burke
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Plus two

Kieron Burke
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Plus three

Kieron Burke
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Plus four

Kieron Burke
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Plus 5

Kieron Burke
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Plus 6

Kieron Burke
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Plus 7

Kieron Burke
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Plus 8

Kieron Burke
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Original

Kieron Burke
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PCA basis for atomic densities

-15 -10 -5 0 5 10 15
i

FIG. 5. Partition density of each H atom in Hg.

FIG. 6. Single H atom densities for H atoms in different
chains and atomic distance (gray). The average density is

HipfQnPrede

FIG. 7. First 7 principal components of the densities shown
in Fig. 6, from top to bottom.
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Improved convergence from basis
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FIG. 8. (Color online) Learning curves for several 1d H chains.
(a) ML using the total density. (b) ML using the bulk parti-
tion densities (see text).
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Origin of error for chain

Kieron Burke
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Convergence for infinite chain }

Kieron Burke
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Pure density functional for strong correlations and the thermodynamic limit from
MAR\ machine learning Li Li, Thomas E. Baker, Steven R. White, Kieron Burke, Phys. Rev.

B 94, 245129 (2016).



Lessons from this part

Can learn exact functional from exact data.

Can learn F[n] instead of T,[n] so accurately you
can even get density.

Created a new data-driven basis by using
atoms in molecules; greatly reduced
computational cost.

Extrapolate to infinite chain limit to within 1
kcal/mol.

No problem in principle to do in 3d.



Papers (all on dft.uci.edu)

Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives John C. Snyder,
Matthias Rupp, Klaus-Robert Miiller, Kieron Burke, International Journal of Quantum Chemistry 115, 1102--
1114 (2015).

Understanding kernel ridge regression: Common behaviors from simple functions to density
functionals Kevin Vu, John C. Snyder, Li Li, Matthias Rupp, Brandon F. Chen, Tarek Khelif, Klaus-
Robert Muller, Kieron Burke, International Journal of Quantum Chemistry 115, 1115--1128 (2015).

Understanding machine-learned density functionals Li Li, John C. Snyder, Isabelle M. Pelaschier, Jessica Huang,
Uma-Naresh Niranjan, Paul Duncan, Matthias Rupp, Klaus-Robert Miiller, Kieron Burke, International Journal of
Quantum Chemistry n/a--n/a (2015).

Kernels, Pre-Images and Optimization John C. Snyder, Sebastian Mika, Kieron Burke, Klaus-Robert
Muller, Chapter in Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik (2013).

Orbital-free Bond Breaking via Machine Learning John C. Snyder, Matthias Rupp, Katja Hansen,
Leo Blooston, Klaus-Robert Muller, Kieron Burke, J. Chem. Phys. 139, 224104 (2013).

Finding Density Functionals with Machine Learning John C. Snyder, Matthias Rupp,
Katja Hansen, Klaus-Robert Muller, Kieron Burke, Phys. Rev. Lett.108, 253002 (2012).

[175] By-passing the Kohn-Sham equations with machine [176] Pure density functional for strong correlations and the
learning Felix Brockherde, Li Li, Kieron Burke, Klaus-Robert thermodynamic limit from machine learning Li Li, Thomas E. Baker,
MEBluller, (to appear, Nature Communications, 2017). Steven R. White, Kieron Burke, Phys. Rev.B (2016).
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Abomination or breakthrough?

ML functionals of this type are completely
different from those we are used to.

No way to check even simple conditions, such
as positivity in domain of application.

Working on incorporating exact conditions into
ML functionals.

They compliment the existing human-
functionals, but do not replace them.

Real test: Generality



Exact conditions in ML-DFT?

Hooke's Atom
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FIG. 2. (color online) The learning curves for functionals < )
trained on scaled (blue) and unscaled (red) densities for the 04 ) \ 5
1D Hooke’s atom. Accuracy of 1 mH is denoted by the dashed ' \ 1 4
line (black). /
-2 0 3
X
1 Ha
- FIG. 4. (color online) The Hooke’s atom densities with differ- X . X
— Unscaled ent w are plotted before scaling (top) and after scaling (bot- FIG. 7. (collor online) The H» denbl‘ileb considered are plotted
— Scaled before scaling (top) and after scaling (bottom). The color

tom). The color of each line indicates the value of w. Notably,
the densities appear “more similar” to each other after scal-
ing.

each line indicates the separation, R. The densities do not
appear to be made more similar by scaling.
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FIG. 3. (color online) Same as Fig. 2, but for Hy densities. Can exact conditions improve machine-learned density functionals?

Jacob Hollingsworth!, Li Li (%:77)!, Thomas E. Baker!?, Kieron Burke'?
' Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

2 Institut quantique & Département de physique, H
Université de Sherbrooke, Québec, Canada J1K 2RI and e e . u Cl . e u
3 Department of Chemistry, University of California, Irvine, CA 92697, USA
(Dated: Saturday 10" February, 2018)
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[ Summary

« ML functionals can
— find accurate densities
— break bonds
— Do the full functional for strongly correlated solids (in 1D)
— Can now do MD of small molecules in 3D

« Thanks to

— Students: Tom Baker, Li Li, John Snyder, Kevin Vu,
Isabelle Pelaschier

— Collaborators: Klaus Mueller, Matthias Rupp, Katia
Hansen, Felix Brockherde, Leslie Vogt, Mark Tuckerman

— Institute of Pure and Applied Math, UCLA
— Funders: NSF from chem, DMR, math



