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The electronic structure problem

• Use atomic units
• Born-Oppenheimer 

approximation
• Wavefunctions

antisymmetric and 
normalized

• Only discuss ground-
state electronic 
problem here, but 
many variations.

• All non-relativistic, 
non-magnetic here

Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):
Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = ≠1
2

Nÿ

i=1

Ò2

i , V̂ee =
1
2

Nÿ

i=1

Nÿ

j ”=i

1
|ri ≠ rj |

,

and di�erence between systems is N and the one-body potential

V̂ =
Nÿ

i=1

v(ri)

Often v(r) is electron-nucleus attraction

v(r) = ≠
ÿ

–

Z–

|r ≠ R–|

where – runs over all nuclei, plus weak applied E and B fields.
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Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ } = E  ,  antisym

The one-particle density is much simpler than  :

n(r) = N

ÿ

‡1

. . .
ÿ

‡N

⁄
d

3
r2 . . . d

3
rN | (r‡1, r2‡2, . . . , rN‡N)|2

and n(r) d
3
r gives probability of finding any electron in d

3
r around r.

Wavefunction variational principle:
I E [ ] © È |Ĥ| Í is a functional

I Extrema of E [ ] are stationary states, and ground-state energy is

E = min
 

È |T̂ + V̂ee + V̂ | Í

where  is normalized and antisym.
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Constrained search proofHohenberg-Kohn theorem (1964)

1 Rewrite variational principle (Levy 79):

E = min
 

È |T̂ + V̂ee + V̂ | Í

= minn

;
F [n] +

⁄
d

3
r v(r)n(r)

<

where

F [n] = min
 æn

È |T̂ + V̂ee| Í

I The minimum is taken over all positive n(r) such that
s

d
3
r n(r) = N

2 The external potential v(r) and the hamiltonian Ĥ are determined to
within an additive constant by n(r)

P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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KS equations (1965)
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„j(r) = ‘j„j(r),
Nÿ

j=1

|„j(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d
3
r

n(rÕ)

|r ≠ rÕ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
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KS potential of He atom
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Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a Accurate exchange-correlation
potentials and total-energy components for
the helium isoelectronic series, C. J.

Umrigar and X. Gonze, Phys. Rev. A 50,

3827 (1994).
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Today’s commonly-used functionals
• Local density approximation (LDA)

– Uses only n(r) at a point.

• Generalized gradient approx (GGA) 
– Uses both n(r) and |Ñn(r)|
– Should be more accurate, corrects overbinding of LDA
– Examples are PBE and BLYP

• Hybrid:
– Mixes some fraction of HF
– Examples are B3LYP and PBE0 
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A few recent applications

• Computers, codes, algorithms always improving
• Making bona fide predictions
• E.g., a new better catalyst for Haber-Bosch process 

(‘fixing’ ammonia from air) was predicted after 
about 25,000 failed experiments (Jens Norskov’s
group)

• Now scanning chemical and materials spaces using 
big data methods for materials design (materials 
genome project).

• World’s hottest superconductor (203K) is hydrogen 
sulfide, predicted by DFT calculations, then made.
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Breadth of applications
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Computational exfoliation

ARTICLES
https://doi.org/10.1038/s41565-017-0035-5

1Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL),  
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 2Vilnius University Institute of Biotechnology, Vilnius, Lithuania.  
*e-mail: nicolas.mounet@polytechnique.org; nicola.marzari@epfl.ch

Two-dimensional (2D) materials provide opportunities to ven-
ture into largely unexplored regions of the materials space. On 
the one hand, their ultimate thinness makes them extremely 

promising for applications in electronics1,2. On the other, the physi-
cal properties of monolayers often change dramatically from those 
of their parent 3D materials, providing a new degree of freedom3 for 
applications while also unveiling novel physics (for example, the val-
ley Hall effect and composite excitations such as trions). Moreover, 
van der Waals (vdW) heterostructures4 have recently emerged as an 
additional avenue to engineer new properties by stacking 2D mate-
rials in a desired fashion.

Progress in this area would be strongly accelerated by the avail-
ability of a broad portfolio of 2D candidate materials. To illustrate 
this point, we can compare the current situation for known 3D 
crystals, for which the knowledge accumulated in the past century 
(both crystal structures and measured physical properties) has 
been collected in databases such as the Pauling file5, the Inorganic 
Crystal Structure Database6 (ICSD) or the Crystallographic Open 
Database7 (COD) (the latter two combined contain, to date, over 
half a million entries). In comparison, 2D materials databases are 
still scarce and limited in size: a first scan of the ICSD identified 
92 2D compounds8 (including Cu2S, subsequently synthesized9). 
This was followed by 103 compounds selected among specific 
classes10, while a recent study focused on transition-metal dichal-
cogenides and oxides, identifying 51 of them as stable11. More 
extensive efforts12,13 have also been put forward to expand the set of 
prospective 2D materials by screening crystal structures from the 
Materials Project14. In fact, high-throughput computational meth-
ods represent a powerful tool15 for exploring materials space and for 

screening materials without having to synthesize them first16–20. For 
instance, these techniques have been successfully employed in the 
search for materials for Li–air and Li-ion batteries21,22, for hydrogen 
storage23, scintillators24, electrocatalysts25, or to accelerate the dis-
covery of light-absorbing materials26.

Here, we systematically explore experimentally known com-
pounds for possible exfoliation, paying particular attention to the 
mechanical stability of the exfoliated layers and the changes in 
the electronic structure that take place in reducing dimensional-
ity—from the emergence of magnetic order to charge-density-wave 
instabilities. We perform this search starting from the inorganic 
compounds recorded in the ICSD and the COD, and then use vdW 
density functional theory (DFT) simulations to test these 3D parents 
for possible exfoliation. In particular, we compute the binding energy 
of 2,662 prospective layered structures and identify those that are 
held together by weak interactions and are ready for mechanical27 or 
liquid-phase28 exfoliation. This results in a portfolio of 1,825 materi-
als that can be exfoliated in monolayers or multilayers. To showcase 
their potential, we explore the electronic, vibrational, magnetic and 
topological properties of 258 of the most promising systems, dis-
closing a number of functional materials that can be studied experi-
mentally, notably including 56 magnetically ordered monolayers.

The reproducibility of all results is ensured by the deployment of 
the AiiDA29 materials’ informatics infrastructure, which keeps track 
of the full provenance of each calculation and result.

Identification of layered compounds
The search protocol starts from a comprehensive initial set of bulk 
3D crystal structures extracted from the ICSD6 and COD7 databases, 

Two-dimensional materials from high-throughput 
computational exfoliation of experimentally 
known compounds
Nicolas Mounet! !1*, Marco Gibertini! !1, Philippe Schwaller! !1, Davide Campi1, Andrius Merkys! !1,2, 
Antimo Marrazzo! !1, Thibault Sohier! !1, Ivano Eligio Castelli! !1, Andrea Cepellotti1, Giovanni Pizzi! !1 
and Nicola Marzari1*

Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic 
applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D 
materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D 
compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. 
High-throughput calculations using van der Waals density functional theory, validated against experimental structural data 
and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are 
either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural proto-
types and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset 
of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and 
antiferromagnetic systems, including half-metals and half-semiconductors.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE NANOTECHNOLOGY | www.nature.com/naturenanotechnology
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Prediction of room-temperature spintronics
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Prediction of a room-temperature and switchable Kane-Mele quantum spin Hall

insulator

Antimo Marrazzo,1, ⇤ Marco Gibertini,1 Davide Campi,1 Nicolas Mounet,1 and Nicola Marzari1, †

1Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and
Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015, Switzerland

(Dated: December 12, 2017)

Fundamental research and technological applications of topological insulators are hindered by
the rarity of materials exhibiting a robust topologically non-trivial phase, especially in two dimen-
sions. Here, by means of extensive first-principles calculations, we propose a novel quantum spin
Hall insulator with a sizeable band gap of ⇠0.5 eV that is a monolayer of Jacutingaite, a natu-
rally occurring layered mineral first discovered in 2008 in Brazil and recently synthesised. This
system realises the paradigmatic Kane-Mele model for quantum spin Hall insulators in a potentially
exfoliable two-dimensional monolayer, with helical edge states that are robust even beyond room
temperature and that can be manipulated exploiting a unique strong interplay between spin-orbit
coupling, crystal-symmetry breaking and dielectric response.

The last decade has been marked by a significant ef-
fort in the study of topological order in real materials.
More than 15 years after the seminal work by Haldane
[1] introducing a model for the Chern insulator (a.k.a.
quantum anomalous Hall insulator or QAHI), Kane and
Mele [2, 3] realised that by doubling Haldane’s model
and introducing spins, they could obtain a quantum spin
Hall insulator (QSHI), i.e. a time-reversal invariant in-
sulator characterized by Z2 topological order and heli-
cal edge states [4]. Soon, it was recognized that the
QSHI is actually a novel state of matter not necessar-
ily bound to the Kane-Mele (KM) model, and the first
experimental realisation of a QSHI came in the form
of a HgTe/CdTe quantum well [5], following a theoret-
ical prediction by Bernevig, Hughes and Zhang [6]. At
variance with QAHIs, in QSHIs the non-trivial topologi-
cal order is protected by time-reversal symmetry (TRS):
an even number of Kramers’ pair states appears at the
edge, potentially hosting dissipation-less electron trans-
port due to the absence of elastic scattering. These
counter-propagating edge modes of opposite spin (heli-
cal) give rise to topologically protected one-dimensional
wires, with the only elastic scattering channel being
back-scattering between Kramers pairs, a process to-
tally forbidden by time-reversal symmetry. Thus, heli-
cal edge states are very robust against interactions and
non-magnetic disorder, making QSHIs a very promising
platform to realise novel low-power electronic and spin-
tronic devices. Despite their massive fundamental inter-
est and their prospective technological applications, ex-
perimentally synthesized QSHIs that persist up to room
temperature are still very scarce.

In this work, we first predict by accurate first-
principles simulations a novel, optimal QSHI monolayer
with a record-high band gap that realises the KM model
and that can be extracted from a naturally occurring
crystal. Then, we unravel the competing roles of spin-
orbit coupling and crystal-symmetry breaking on struc-

tural stability, and explore their interplay to show how
the topological phase can be switched using moderate,
realistic electric fields.

Jacutingaite (Pt2HgSe3) is a new species of platinum-
group minerals first discovered in 2008 [7]; in 2012, syn-
thetic Jacutingaite was also obtained [8] and its crys-
tal structure identified with powder X-ray di↵raction.
The Jacutingaite crystal structure has spacegroup P 3̄m1
(164), with a trigonal unit cell composed of 12 atoms.
The crystal is layered with AA stacking and a reported
[8] experimental interlayer distance of 5.3 Å. The lay-
ered character of Jacutingaite is supported by the ex-
perimental reports of “very good {001} cleavage” for the
mineral [8], and a laminated morphology for the syn-
thetic crystals. To confirm this, we compute [9] with
non-local van der Waals density-functional theory (vdW-
DFT, see Methods in the Supplementary Material) the
geometry and binding energy Eb of Jacutingaite find-
ing an interlayer distance of 5.3 Å in exact agreement
with experiments, and a binding energy for the mono-
layer of 60 meV · Å�2 [10]. This latter is roughly twice
the binding energy obtained [9] for the recently syn-
thesized Cr2Ge2Te6 or for phosphorene, and less than
three times the binding energy of graphene or hexago-
nal boron nitride monolayers, suggesting that monolayer
Jacutingaite could be obtained through common exfoli-
ation techniques such as adhesive tape, intercalation or
sonication in addition to synthetic growth. The crys-
tal structure of monolayer Jacutingaite is shown in Fig.
1. The low-energy physics around the Fermi level can
be well described by a two-band model that mirrors the
KM model for graphene [2]. To show this, first we con-
struct an ab-initio 2⇥ 2 Hamiltonian without spin-orbit
coupling (SOC) in a basis of maximally-localised Wan-
nier functions (MLWFs) [11]. Fig. 1 highlights how such
a simple model interpolates very well the highest occu-
pied and lowest unoccupied bands as obtained directly
from DFT calculations (orange solid lines and circles re-
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Italian opera?
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Merkys et al. J Cheminform  (2017) 9:56 
DOI 10.1186/s13321-017-0242-y

RESEARCH ARTICLE

A posteriori metadata from automated 
provenance tracking: integration of AiiDA 
and TCOD
Andrius Merkys1,2* , Nicolas Mounet1, Andrea Cepellotti1, Nicola Marzari1, Saulius Gražulis2,3  
and Giovanni Pizzi1

Abstract 
In order to make results of computational scientific research findable, accessible, interoperable and re-usable, it is 
necessary to decorate them with standardised metadata. However, there are a number of technical and practical chal-
lenges that make this process difficult to achieve in practice. Here the implementation of a protocol is presented to 
tag crystal structures with their computed properties, without the need of human intervention to curate the data. This 
protocol leverages the capabilities of AiiDA, an open-source platform to manage and automate scientific computa-
tional workflows, and the TCOD, an open-access database storing computed materials properties using a well-defined 
and exhaustive ontology. Based on these, the complete procedure to deposit computed data in the TCOD database 
is automated. All relevant metadata are extracted from the full provenance information that AiiDA tracks and stores 
automatically while managing the calculations. Such a protocol also enables reproducibility of scientific data in the 
field of computational materials science. As a proof of concept, the AiiDA–TCOD interface is used to deposit 170 theo-
retical structures together with their computed properties and their full provenance graphs, consisting in over 4600 
AiiDA nodes.

Keywords: DFT, Reproducibility, Provenance, Open data, Ontology, Materials science

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Modelling and simulation are commonly identified as the 
third paradigm in scientific understanding, complement-
ing theory and experiment. In particular, computational 
materials science has developed into an essential field 
due to two main factors. First, in the past years signifi-
cant advances have been achieved both in the approxi-
mations of the theories used to simulate materials from 
first-principles [1] and in the codes that implement them 
(many of which are distributed open-source). Second, 
these computationally-expensive calculations have been 
made feasible thanks to the exponential increase of com-
puting power predicted by Moore’s law and the corre-
sponding decrease of the price/performance ratio. As a 

consequence, large number of properties can nowadays 
be computed for large families of materials. A number of 
online databases has appeared in the past few years, like 
the Materials Project [2], OQMD [3] and AFLOWLIB [4]. 
However, much effort is still needed to consolidate the 
knowledge from publications, tagging results with suit-
able metadata under an established ontology, and pre-
serving at the same time the complete provenance of the 
computed data to enable reproducibility of the results.

Currently, there are several attempts to define an ontol-
ogy in the field of theoretical material science, like the 
European Theoretical Spectroscopy Facility (ETSF)  [5, 
6], NOMAD  [7], OPTiMaDe  [8] and the Theoreti-
cal Crystallography Open Database (TCOD)  [9, 10]. 
The latter was launched with the aim of collecting the 
results from several kinds of calculations (DFT, post-HF, 
QM/MM, etc.), into an open-access resource for long-
term archival storage. The TCOD adopts the Crystal-
lographic Information Framework  (CIF) format  [11], 

Open Access

*Correspondence:  andrius.merkys@gmail.com 
2 Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, 
10257 Vilnius, Lithuania
Full list of author information is available at the end of the article



Electrochemistry
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PHYSICAL REVIEW MATERIALS 1, 025402 (2017)

Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes

Aris Marcolongo and Nicola Marzari
Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL),

École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
(Received 16 January 2017; published 5 July 2017)

A microscopic understanding of fast ionic transport is fundamental to design novel solid-state electrolytes. We
address the role of correlations in these systems and study in detail the tracer and charge diffusion coefficients,
deriving a novel inequality between these two quantities. We investigate the failure of the Nernst-Einstein and the
physical consequences of a nontrivial Haven ratio with extensive first-principles molecular dynamics in the fast
ion conductor Li10GeP2S12. Last, we show that the approximate tracer diffusion still provides accurate activation
free energies.

DOI: 10.1103/PhysRevMaterials.1.025402

I. INTRODUCTION

Lithium salts and organic solvents are the main components
of state-of-the-art electrolytes used in commercial batteries.
These materials are flammable and the formation of passivating
films at the cathode, not flexible enough to sustain volume
changes, poses limitations to their lifetime and cyclability.
Solid electrolytes avoid many of these problems and therefore
there is a pressing interest in finding solid lithium-ion
electrolytes with negligible electronic conductivity (necessary
to prevent shorting), high ionic conductivity, stable in contact
with the electrodes and with a wide electrochemical window
[1]. The search for efficient solid-state electrolytes leads nat-
urally to consider materials with high carrier concentrations.
Under such conditions, correlations between carriers play a
fundamental role and charge transport becomes similar to
diffusion phenomena taking place in fluids. This phenomenon
causes a failure of the Nernst-Einstein equation, which
provides an approximate relation between the tracer diffusion
coefficient and ionic conductivity. The goal of this work is to
provide new tools, theoretical and computational, to analyze
in detail the difference between these two physical quantities
in fast ionic conductors, highlighting to which extent corre-
lations can increase cooperative motion and eventually ionic
conductivity. Furthermore, we provide a physical application
that provides insight into the role of correlations in a system of
primary interest. Focusing on the value of ionic conductivity,
Li10GeP2S12 (LGPS) is one of the best performing solid-
state electrolyte materials, with an experimental bulk ionic
conductivity of 12 mS/cm at ambient temperature, close to
the values reported for organic solvents. In this superionic
material [2] ionized lithium atoms can diffuse through a rigid
host matrix following parallel unidimensional paths connected
by transverse connections [4] (see Fig. 1). The rigid matrix
is composed of sulfur tethraedra, with germanium and phos-
phorus cations at their center. LGPS, first synthesized in 2011
[5], has immediately attracted the interest of the computational
physics community [4,6]. In particular, elemental substitutions
[6] have been extensively studied, in order to preserve the same
structure of the original material, while monitoring the tracer
diffusion coefficient. All previous works took for granted the
relation between the tracer diffusion coefficient and the ionic
conductivity provided by the Nernst-Einstein equation [7].
With our contribution we aim at showing that this relation
is not valid and its application leads to an underestimation of

the value of conductivity. This fact was already noticed, albeit
without explanation, in a previous study based on classical
molecular dynamics [8]. Nevertheless, we will numerically
show that the activation barriers computed by the two methods
agree. A similar failure of the Nernst-Einstein relation has
recently been observed in a sodium analog of LGPS [9].

II. THEORY

We focus our analysis on the computation of the ionic
conductivity σ in fast ionic conductors and briefly review the
definitions of the quantities of interest. The single-particle
motion of the diffusing species is described by the tracer
diffusion coefficient:

Dtr ≡ lim
t→∞

⟨|"x|2⟩
6t

= 1
3

∫ ∞

0
⟨v(t)v(0)⟩dt, (1)

where "x(t) is the displacement of a tagged particle, with
velocity v(t), in a time interval t . A direct connection with the
dc ionic conductivity σ is provided by the following Nernst-
Einstein equation:

σ ∼ Z2
c e

2C

kBT
Dtr , (2)

where C = Nc

V
is the carrier number concentration and Zce

the carriers’s charge. This equation, although suggestive and
routinely applied, is only an approximation to the exact
expression as derived by linear response theory [10]:

σ = N2
c Z2

c e
2

3kBT V

∫ +∞

0
⟨V c(t)V c(0)⟩dt, (3)

where V c stands for the velocity of the carriers’ center of
mass (explicitly V c = 1

Nc

∑Nc

i=1 vi). From now on we will
reserve uppercase letters to indicate collective variables and
lowercase ones for single-particle properties. Applying the
Einstein identity it is possible to define a charge diffusion
coefficient Dσ [11,12] associated with the diffusion of the
carriers’ center of mass, leading to an exact form of the
Nernst-Einstein equation, σ = Z2

c e
2C

kBT
Dσ , where Dtr has been

replaced by Dσ . The charge diffusion coefficient, differently
from the tracer diffusion coefficient, is directly proportional to
the ionic conductivity. The ratio between the tracer and charge
diffusion coefficient is referred to in the literature as the Haven
ratio: H = Dtr

Dσ
.

2475-9953/2017/1(2)/025402(4) 025402-1 ©2017 American Physical Society



Perdew’s systematic approach to XC

Jacob’s ladder
to DFT heaven

(or hell?)

Increasingly sophisticated
and expensive density
functional
approximations.

EXC =
⁄

d
3
r f (n, Òn, ·, . . .)

JCTC 2009 Vol. 5, Iss. 4.
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• Idea:  Successively 
refine 
approximations

• Use exact conditions
• Avoid fitting of 

parameters to data 
sets

• Each rung is more 
sophisticated, but 
costs more



Condensed 

matter physics

Big picture
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TF theory

Lieb et al

Atoms

Non-empirical

use of QM;

Perdew

Empiricism

Becke, Truhlar
Exact 

conditions 

Perdew, Levy

Modern DFT

Kohn-Sham 

EXC[n↑,n↓]

Materials 

science

Astrophysics, 

protein folding, 

soil science,…Chem
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DFT papers
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DFT: A Theory Full of Holes,  Aurora Pribram-Jones, David A. Gross, Kieron Burke, 
Annual Review of Physical Chemistry (2014).
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In reality…
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Machine learning in physical sciences

• Explosion of interest in last 5 years
• Machine learning/big data/data science very 

broad terms
• Some examples:
– Searching databases of materials calculations to find 

optimal functionality
– Searching chemical compound space
– Accelerating sampling
– Designing interatomic potentials

Kieron Burke MARVEL lecture 17



ML interatomic potentials
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PHYSICAL REVIEW MATERIALS 2, 013808 (2018)

Achieving DFT accuracy with a machine-learning interatomic potential:
Thermomechanics and defects in bcc ferromagnetic iron

Daniele Dragoni,1,2 Thomas D. Daff,3 Gábor Csányi,3 and Nicola Marzari1
1Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL),

École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
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We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe
complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case.
The training database includes total energies, forces, and stresses obtained from density-functional theory
in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments,
ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different
crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model
to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations.
There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent
by atomic configurations that were not part of the training set. We observe the benefit and the need of using
highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a
systematically improvable potential that can achieve the same accuracy of density-functional theory calculations,
but at a fraction of the computational cost.
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I. INTRODUCTION

Iron is the most abundant element at the Earth’s core, it
is responsible for the generation of the geomagnetic field, it
is the main component of the most widely used structural
engineering material (steel), and in its atomic form is a
component of, e.g., oxygen-binding proteins. In its crystalline
form, it can host impurities that improve its mechanical
properties and make it a formidably strong material suitable
for many applications in the fields of construction, automotive,
machinery, and energy production. It is a metal with partially
filled d electronic bands and has a complex phase diagram
which presents transformations driven by the interplay of
magnetic, electronic, and vibrational degrees of freedom. As
a consequence, the modeling of iron is highly nontrivial.
Density-functional theory (DFT) provides a relatively good
description of its zero-temperature properties [1– 6] although,
even in this regime, theory shows discrepancies with respect
to experimental data [7]. The finite-temperature behavior of
thermodynamical quantities of the bulk crystal can be well
described up to a good fraction of the Curie point considering
only vibrational effects [7,8]. Nonetheless, as temperature
approaches and crosses the Curie point, magnetic fluctuations
and magnetic disorder become crucial for a correct description
of such thermodynamic properties [9– 11]. In fact, despite the
progress achieved in the past years, a satisfactory description of
the thermodynamic phase transitions and of the paramagnetic
phases of iron from first principles remains a formidable task.
Even more complex is the study of iron alloys and steels that,
on top of the challenges mentioned above, requires in many
cases the capability to deal with length and time scales which
are beyond the reach of any ab initio technique.

For this reason, empirical interatomic potentials have been
developed, fitted typically to a mixture of experimental and ab
initio data, that are capable of simulating systems containing
thousands or millions of atoms for thousands or millions of
time steps. These models allowed a detailed study of the
microscopic processes at the origin of macroscopic mechanical
properties of iron and iron alloys under different conditions.
Embedded Atom Models (EAM) [12], and other similar ap-
proaches such as the Finnis-Sinclair model [13], local volume
potentials [14], and the glue model [15] have proved to be suc-
cessful. In particular, the Mendelev family of parametrizations
[16– 18] are able to reproduce many fundamental properties
of elemental bcc iron at zero temperature. These models,
however, are not always fully satisfactory in reproducing the
energetics of defective configurations such as self-interstitials
[19] and divacancies [18], the Peierls potentials associated
with screw dislocations [18,20] or even fundamental bulk
properties at finite temperature within the range of stability of
the ferromagnetic α phase [21]. Additionally, due to their fixed
functional form, these potentials are not easily generalizable
to the modeling of bonds with mixed metallic and covalent
character as can be found, for example, in Fe-C alloys. More
recently, new approaches such as the modified EAM [22],
the (analytic) bond order potentials [23– 25], magnetic EAM
[26], or metallic-covalent interatomic potentials [27] have been
developed in order to overcome some of these limitations.

In this work, we follow an alternative approach, generating
a Gaussian approximation potential [28] (GAP) for the α
phase of iron. GAP is a highly flexible machine-learning
model that allows to fit directly and accurately first-principles
potential energy surfaces (PES). Transferability is ensured by
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Machine learning: Kernel ridge regression

• Powerful branch of artificial intelligence
• Essentially fitting and interpolating
• Maps problem into much higher-dimension 

feature space, using a simple kernel
• Higher-dimension often means more linear
• Perform regression in feature space
• Project back to original problem

Kieron Burke MARVEL lecture 19



Kernel ridge regressionMethod

http://www.ics.uci.edu/~welling/classnotes/papers_class/Kernel-Ridge.pdf

f̂(x) =
MX

j=1

�jk(xj ,x)

k(x,x0) = exp(�kx� x0k2/(2�2))

• Kernel ridge regression (KRR).  Given {xj , fj}

• Minimize:

C(↵) =
MX

j=1

(f̂(xj)� fj)
2 + ⇥2⇥�⇥2

↵ = (K + �2I)�1f
noise level

length scale
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Fitting a simple function
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Too high noise level: underfit

Kieron Burke MARVEL lecture 22



Medium noise level
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Small noise level: overfit
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Cross validation
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Cross validation
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More cross validation
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Average over samples
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Medium noise level
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Exact function and best fit
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ML applications in electronic structure

• Most with Klaus Mueller of TU Berlin, 
computer science.

• ML now being applied directly to, e.g., 
molecular energies from geometries for 
drug design, many by Matthias Rupp (FHI 
Berlin).

• Our efforts are focused on finding Ts[n] 
from examples, work by John Snyder 
(Humboldt fellow at TU Berlin/MPI Halle)
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If only we knew the kinetic energy as a 
density functional

• The KS equations are solving the following 
equation for us:

• If we had an explicit approximation for 
TS[n], we could solve this directly.

Kieron Burke MARVEL lecture 32
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�TS

�n(r)
= �v(r)� vH[n](r)� vXC[n](r) (1)

In this supplemental material we write out the free

energy equations of the main text in their standard, non-

compact, form. We explicitly show the steps of the

derivation and illustrate the approximations that were

made to arrive at the final expressions. We also demon-

strate the coupling-constant approximation that is used

in our final exchange-correlation equation.

We begin with the equations from Ref. [1] where the

energy formalism of potential functional theory is gener-

alized to the free energy in the grand canonical ensemble

at temperature ⌧ . The free energy and interacting and

non-interacting universal functional are expressed as

A⌧
[v] = A⌧

[v0] +

Z
d3r n̄⌧

[v](r)�v(r),

F ⌧
[v] = A⌧

[v0] +

Z
d3r (n̄⌧

[v](r)�v(r)� n⌧
[v](r)v(r)) ,

K⌧
S
[v⌧

S
] = A⌧

S
[v⌧

S,0] +

Z
d3r (n̄S[v

⌧
S
](r)�v⌧

S
(r)� n⌧

S
[v⌧

S
](r)v⌧

S
(r)) ,

where �v(r) = v(r) � v0(r), n̄⌧
[v](r) =

R 1
0 d�n⌧

[v�](r),
and v�(r) = (1 � �)v0(r) + �v(r). The non-interacting

case, i.e., the third equation above, has equivalent defini-

tions. With this we extract the HXC contribution from

A⌧
HXC

[v] = F ⌧
[v]�K⌧

S
[v⌧

S
[v]]:

A⌧
HXC

[v] =
�
A⌧

[v0]�A⌧
S
[v⌧

S,0]
�
+

Z
d3r {n̄⌧

[v](r)�v(r)� n⌧
[v](r)v⌧ (r)� n̄⌧

S
[v⌧

S
](r)�v⌧

S
(r) + n⌧

S
[v⌧

S
](r)v⌧

S
(r)} ,

=
�
A⌧

[v0]�A⌧
S
[v⌧

S,0]
�
+

Z
d3r {n̄⌧

[v](r)�v(r)� n̄⌧
S
[v⌧

S
](r)�v⌧

S
(r) + n⌧

[v](r)v⌧
HXC

(r)} , (2)

where we use the definitions of Mermin-Kohn-Sham,

n⌧
S
[v⌧

S
](r) = n⌧

[v](r) and v⌧
S
(r) = v(r) + v⌧

HXC
(r), in the

final line. Now we substitute in the definitions of the

interacting and non-interacting free energies,

A⌧
[v0] = F ⌧

[v0] +

Z
d3r n⌧

[v0](r)v0(r),

A⌧
S
[v⌧

S,0] = K⌧
S
[v⌧

S,0] +

Z
d3r n⌧

S
[v⌧

S,0](r)v
⌧
S,0(r),

and use A⌧
HXC

[v0] = F ⌧
[v0]�K⌧

S
[v⌧

S,0[v0]]. Then,

A⌧
HXC

[v] = A⌧
HXC

[v0] +

Z
d3r

�
n̄⌧

[v](r)�v(r)� n̄⌧
S
[v⌧

S
](r)�v⌧

S
(r) + n⌧

[v](r)v⌧
HXC

(r) + n⌧
[v0](r)v0(r)� n⌧

S
[v⌧

S,0](r)v
⌧
S,0(r)

 
,

= A⌧
HXC

[v0] +

Z
d3r {n̄⌧

[v](r)�v(r)� n̄⌧
S
[v⌧

S
](r)�v⌧

S
(r) + n⌧

[v](r)v⌧
HXC

(r)� n⌧
[v0](r)vHXC,0(r)} , (3)

where we again make use of Mermin-Kohn-Sham:

n⌧
S
[v⌧

S
](r) = n⌧

[v](r) and n⌧
S
[v⌧

S,0](r) = n⌧
[v0](r).

As noted in the main text we make two approximations

to simplify Eq. (3) The first is

n⌧
[v�](r) ⇡ n⌧

S
[v⌧�

S
](r). (4)

These two expressions agree at � = 0 and � = 1 by

1



Basic idea: Orbital-free DFT

• For a limited variety of one-body potentials, construct 
kinetic energy functionals via ML that are sufficiently 
accurate to do the job.

• Typically, require accuracy of 1 kcal/mol =1.6 mHa=0.05 
eV

• For kinetic energy, also need functional derivative.
• Most useful when multiple slightly different uses of 

DFT, eg during an MD run.
• Functional could be disposable, i.e., thrown away at 

end of run.
• Is completely non-local in general, so best advantage 

when bonds break, as local functionals fail.
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Demo problem in DFT

• Represent the density on a grid with spacing

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

Prototype

• N non-interacting same-spin fermions confined to 1d box

• ML-DFA for KE:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

• Define class of potential:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing
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Performance for Ts
Performance

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kcal/mol

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
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the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing
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functional derivative?

Functional derivative 3

the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1

�x
⌅nT̂ (n) =

M�

j=1

�⇥
j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1
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⌅nT̂ (n) =
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j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by
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where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by
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where �⇥
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tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.

ML-DFAExact

• Functionals are 
defined on infinite-
dimensional spaces

• With finite 
interpolation, can 
always find bad 
directions

• Can we make a 
cruder definition 
that will work for 
our purposes?
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1
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⌅nT̂ (n) =
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j=1
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j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
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To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1
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X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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Using standard methods from machine learning, we introduce a novel technique for density functional
approximation. We use kernel ridge regression with a Gaussian kernel to approximate the non-interacting
kinetic energy of 1d multi-electron systems. With fewer than 100 training densities, we can achieve
mean absolute errors of less than 1 kcal/mol on new densities. We determine densities for which our
new functional will fail or perform well. Finally, we use principle component analysis to extract accurate
functional derivatives from our functional, enabling an orbital-free minimization of the total energy to
find a self-consistent density. This empirical method has two parameters, set via cross-validation, and
requires no human intuition. In principle, this general technique can be extended to multi-dimensional
systems, and be used to approximate exchange-correlation density functionals.

More than 10,000 papers per year report solutions to
electronic structure problems using Kohn-Sham (KS) den-
sity functional theory (DFT) [1, 2], all approximating the
exchange-correlation (XC) energy as a functional of the elec-
tronic spin densities. The quality of the results depends
crucially on these density functional approximations (DFAs)
[]. Present DFAs often fail for strongly correlated systems[],
rendering the methodology useless for some of the most
interesting problems.

There is a never-ending search for improved XC approxi-
mations. The original local density approximation (LDA) of
Kohn and Sham [2] is uniquely defined by the properties of
the uniform gas, and has been argued to be a universal limit
of all systems [3, 4]. But the refinements that have proved
useful in chemistry and materials are not, and di�er both in
their derivations and details. Traditionally, physicists have
championed a non-empirical approach, deriving approxima-
tions from quantum mechanics and avoiding fitting to spe-
cific finite systems[]. But chemists typically use a few [5, 6]
or several dozen [7] parameters to improve accuracy on a
limited class of molecules. Non-empirical functionals can be
considered controlled extrapolations that work well across a
broad range of systems and properties, bridging the divide
between molecules and solids. Empirical functionals are lim-
ited interpolations that are more accurate for the molecular
systems they are fitted to, but often fail for solids. A re-
cent example is the van der Waals functional of Langreth
and Lundquist [8], and an empirical derivative for which no
derivation was deemed necessary[]. Passionate debates are
fueled by this cultural divide.

Machine learning (ML) is a powerful tool for finding pat-
terns in high-dimensional spaces. It employs algorithms by
which the computer learns from empirical data via induc-
tion. ML has been very successful in many applications,
including neuroscience ?? and chemistry [9]. In this work,
we apply ML methodology to a prototype density functional
problem: non-interacting spinless fermions confined to a
1d box, subject to a smooth potential. The accuracy we
achieve in approximating the kinetic energy (KE) of this
system is far beyond the capabilities of present human-
designed approximations and is su⇥cient to produce highly

accurate self-consistent densities—the functional derivative
is extremely accurate. We also define key technical concepts
needed to apply ML to DFT problems.
Empirical DFAs employ the basic types of approximations

derived from general principles, fitting the parameters to
training sets of energy di�erences[]. They explore only an
infinitesimal fraction of all possible functionals and use rel-
atively few data points. The ML-derived DFA (ML-DFA)
achieves chemical accuracy using many more inputs, with-
out reference to any of the underlying physics. Intuition
is kept to a minimum but remains necessary to specify the
basic mechanism and representation of data.
We illustrate the accuracy of the ML-DFA in Fig. 1, in

which the functional was constructed from 100 densities on
a dense grid. The successful construction of this functional
opens up a new approach to functional approximation, en-
tirely distinct from previous approaches: The ML-DFA con-
tains on the order of 104 empirical numbers and satisfies
none of the standard exact conditions.
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FIG. 1. Comparison of a sample projected (see within) func-
tional derivative of the ML-DFA with the projected exact
derivative.

The prototype DFT problem we consider is N non-
interacting spinless Fermions confined to a 1d box, 0 �

m = 15, � = 5
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Lessons

• Exact noise-free data infinitely available for 
Ts[n], every cycle of every KS calculation in the 
world provides examples.

• Need very accurate derivatives to get accurate 
density from Euler equation.

• Can find ways to bypass this.
• Functionals can be made arbitrarily accurate 

with sufficient data.
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Finding Density Functionals with Machine Learning John C. 
Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert Müller, 
Kieron Burke, Phys. Rev. Lett. 108, 253002 (2012)



Bond-breaking with ML

• Performed many 1d 
KS calculations of 
diatomics as function 
of bond length, using 
LDA with soft-
Coulomb repulsion, 
including several with 
more than 2 
electrons
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Orbital-free Bond Breaking via Machine Learning dft.uci.edu

FIG. 1. KS kinetic energies (in Hartrees) for 1d soft-Coulomb
models of H2, He2, Li2, Be2 and LiH, for nuclear separations
between 0 and 10.

For a more thorough discussion of DVR, see Ref. 37.
To find the KS energies and orbitals, we diagonalize the
Hamiltonian of the KS system in the DVR basis

H
DVR = UTU

† + V
DVR
S

, (12)

where V
DVR
S,↵� = vS[n](x↵)�↵� , and the matrix elements of

the kinetic energy operator, Tij =
D
⇠i

���� 1
2

@2

@x2

��� ⇠j

E
, are

computed analytically. The electron density is given by

n(x) =
X

↵

p
w↵n(x↵)✓↵(x). (13)

Note that only the value of the densities at the quadra-
ture points x↵ need be computed and stored:

n(x↵) = 2

N/2X

j=1

|�j(x↵)|2. (14)

We compute reference KS LDA energies and densities
for 1d H2, He2, Li2, Be2 and LiH, for nuclear separation
R between 0 and 10. The range of kinetic energies for
all systems are shown in Fig. 1. With NG = 100, the
errors in all reference energies are less than 10�7. Fig. 2
shows the densities and potentials for the united atom,
equilibrium bond length, and stretched diatomic for H2

and LiH. Fig. 9 shows the LDA binding curve of H2 and
LiH. Additionally, we extract equilibrium bond lengths
Re, vibrational frequencies !e, and dissociation energies
D0 (which we calculate as the di↵erence in molecular
energies between R = 10 and R = Re, minus the zero-
point vibrational energy), listed in Table I.

C. Orbital-free DFT

In orbital-free DFT, TS is approximated directly as a
functional of n. The ground-state density is found by the

(a)

(b)

FIG. 2. The 1d soft-Coulomb model for (a) H2 (Z↵ = Z� = 1,
N = 2) and (b) LiH (Z↵ = 3, Z� = 1, N = 4). The
KS electronic density n(x) and the corresponding KS poten-
tial vS[n](x) are shown at R = 0 (dashed), equilibrium bond
length Re (solid), and nearly dissociated R = 10 (dot dashed).
Re values are given in Table I. Values given in atomic units.

constrained minimization

�

⇢
Ev[n] � µ

✓Z
n(x) dx � N

◆�
= 0, (15)

where the chemical potential µ is adjusted to produce
the required particle number N . For the KS system, this
becomes simply

�TS[n]

�n(x)
= µ � vS[n](x). (16)

At self-consistency, the functional derivative of the KE is
negative the KS potential (up to a constant). This equa-
tion can be solved directly for the ground state density ñ

—no orbitals are required. Depending on the approxima-
tion to TS, the functional derivative may be ill behaved
at the nuclei for real molecular systems, making it di�-
cult or impossible to solve self-consistently. This problem
can be avoided by using pseudopotentials, ameliorating
the 1/r divergence at the nuclei.

Let T̃S be an approximate TS, yielding an approximate
Ẽv[n]. There are two tests of an approximate T̃S. The
weaker test is to evaluate T̃S on the KS density n and
compute the error �EF ⌘ Ẽv[n]�Ev[n] = T̃S[n]�TS[n] =

PREPRINT from Burke Group archives 4

Orbital-free Bond Breaking via Machine Learning John C. Snyder, 
Matthias Rupp, Katja Hansen, Leo Blooston, Klaus-Robert Müller, 
Kieron Burke, J. Chem. Phys. 139, 224104 (2013)



Kevin’s paper: from functions to functionals

• Plot error as a 
function of 
hyperparameters

• Repeat for fitting 
f(x)= cos x
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Introduction

Curves have roughly the

same “valley” shape for all

NT

Bottom of the valley is an

order of magnitude deeper

than the walls

These valleys are nearly

identical in shape for

su�ciently large NT , which

indicates that this particular

feature arises in a systematic

manner as NT increases
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Introduction
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Understanding kernel ridge regression: Common behaviors from simple 
functions to density functionals,  Kevin Vu, John C. Snyder, Li Li, Matthias 
Rupp, Brandon F. Chen, Tarek Khelif, Klaus-Robert Müller, Kieron Burke, 
International Journal of Quantum Chemistry 115, 1115--1128 (2015).



Road map back to reality

Roadmap to 3d land

1d box

1d diatomics

3d atoms, diatomics

3d molecules

large systems, real applications

2

II. TECHNICAL BACKGROUND

Kernel ridge regression (KRR) is a non-linear version
of regression with regularization to prevent overfitting [3].
(introduce as gaussian process regression instead?) For
KRR, our machine learning approximation (MLA) takes the
form

TML(n) =
M!

j=1

!jk(nj ,n), (1)

where !j are weights to be determined, nj are training
densities and k is the kernel, which measures similarity
between densities. We choose a Gaussian kernel, common
in ML:

k(n,n!) = exp(!#n! n
!#2/(2"2)), (2)

where the hyperparameter " is called the length scale. The
weights are found by minimizing the cost function

C(!) =
M!

j=1

#T 2

j + $#!#2, (3)

where #Tj = TML

j ! Tj and ! = (!1, . . . ,!M ). The
second term is a regularizer that penalizes large weights
to prevent overfitting. The hyperparameter $ controls
regularization strength. Minimizing C(!) gives

! = (K + $I)"1
T , (4)

where K is the kernel matrix, with elements Kij =
k(ni,nj), and I is the identity matrix.
The hyperparameters " and $ are determined via leave-

one-out (LOO) cross validation, Define an ensemble of
functionals {TML

i,",#(n)} where the ith training density
is excluded. The hyperparameters are optimized by
minimizing the ensemble mean absolute error (MAE):

%($,") =
1

M

M!

i=1

|TML

i,",#(ni)! Ti| (5)

In recent work [? ], we demonstrated for the first time,
the ability of ML to approximate density functionals, for
a simple 1d model. However, in that work, the fermions
are confined to live inside a box, restraining the variety of
possible densities. In particular, there is no analog of a
binding energy curve, where a density is centered on two
sites whose separation varies continuously from small to
infinite.
In the present work, we consider one-dimensional

diatomic ’molecules’. The one-body potential attraction
of an ’atom’ of nuclear charge Z is chosen to be soft-
Coulombic[? ]

v(x) = ! Z$
1 + x2

, (6)

as this has been used in a variety of contexts. We use the
same form and strength for the internuclear repulsion:

VNN (R) =
Z2

$
1 +R2

(7)

Fig. 2 shows the densities and potentials for the united
atom, equilibrium bond length, and stretched diatomic.
[J, because you have no e-e interaction, your equilibrium
molecules looks very much like the united atom limit, not
like a molecule. We need to adjust the nuc rep to make
this look more like a molecule, or use self-consistent XC
calculations].
To generate a dissociation curve like that of Fig 1, we

consider bond lengths up to R = 15, and so place the entire
system on a 500 point grid from x = !20 to 20. We then
solve the Schrödinger equation numerically using Numerov’s
method [? ]. We doubly-occupy the lowest Z orbitals, so
that N = 2Z, where N is the number of fermions. We
extract various energies and the density as a function of R
for di"erent values of N .
To construct the model, we choose M training densities

at evenly spaced R between 0 and 15. Table I shows the
performance of the MLA.

III. CHALLENGES OF SELF-CONSISTENCY

A KE functional that predicts only the energy is useless
in practice, since the minimization:

&T [n]

&n(x)
= µ! v(x), (8)

where v(x) is the potential and where µ is adjusted to
produce the required particle number, requires an accurate
functional derivative (gradient). Fig. 3 shows the gradient
of our MLA evaluated at the ground-state density is very
di"erent from the exact.

FIG. 2. The electronic density and potential for Z = 1, atR =
0 (solid), equilibrium bond length (dashed), and stretched at
R = 15 (dot-dashed).

The prototype DFT problem we consider is N noninter-
acting spinless fermions confined to a 1D box, 0 ! x ! 1,
with hard walls. For continuous potentials vðxÞ, we solve
the Schrödinger equation numerically with the lowest N
orbitals occupied, finding the KE and the electronic density
nðxÞ, the sum of the squares of the occupied orbitals. Our
aim is to construct a MLA for the KE T½n% that bypasses
the need to solve the Schrödinger equation—a 1D analog
of orbital-free DFT [14]. (In 3D orbital-free DFT, the local
approximation as used in the Thomas-Fermi theory, is
typically accurate to within 10%, and the addition of the
leading gradient correction reduces the error to about 1%
[15]. Even this small an error in the total KE is too large to
give accurate chemical properties.)

First, we specify a class of potentials from which we
generate densities, which are then discretized on a uniform
grid of G points. We use a linear combination of three
Gaussian dips with different depths, widths, and centers,

vðxÞ ¼ '
X3

i¼1

ai exp½'ðx' biÞ2=ð2c2i Þ%: (1)

We generate 2000 such potentials, randomly sampling
1< a< 10, 0:4< b< 0:6, and 0:03< c< 0:1. For each
vjðxÞ, we find for N up to four electrons, the KE Tj;N and
density nj;N in RG on the grid using Numerov’s method
[16]. For G ¼ 500, the error in Tj;N due to discretization is
less than 1:5 ( 10'7. We take 1000 densities as a test set,
and chooseM others for training. The variation in this data
set for N ¼ 1 is illustrated in Fig. 2.

Kernel ridge regression is a nonlinear version of regres-
sion with regularization to prevent overfitting [17]. For
kernel ridge regression, our MLA takes the form,

TMLðnÞ ¼ !T
XM

j¼1

!jkðnj;nÞ; (2)

where !j are weights to be determined, nj are training
densities, and k is the kernel, which measures similarity
between densities. Here, !T is the mean KE of the training

set, inserted for convenience. We choose a Gaussian kernel,
common in ML,

kðn;n0Þ ¼ exp½'kn' n0k2=ð2"2Þ%; (3)

where the hyperparameter " is called the length scale. The
weights are found by minimizing the cost function,

C ð!Þ ¼
XM

j¼1

"T2
j þ #k!k2; (4)

where "Tj ¼ TML
j ' Tj and ! ¼ ð!1; . . . ;!MÞ. The sec-

ond term is a regularizer that penalizes large weights to
prevent overfitting. The hyperparameter # controls regulari-
zation strength. Minimizing Cð!Þ gives

! ¼ ðK þ #IÞ'1T; (5)

where K is the kernel matrix with elements K ij ¼ kðni;njÞ,
and I is the identity matrix. Then " and # are determined
through tenfold cross validation: the training set is partitioned
into 10 bins of equal size. For each bin, the functional is
trained on the remaining samples, and" and# are optimized
by minimizing the mean absolute error (MAE) on the bin.
The partitioning is repeated up to 40 times, and the hyper-
parameters are chosen as the median over all bins.
Table I gives the performance of TML [Eq. (2)] trained on

MN-electron densities and evaluated on the corresponding
test set. ThemeanKEof the test set forN ¼ 1 is 5.40 hartree
(3390 kcal=mol). To contrast, the LDA in 1D is Tloc½n% ¼
$2

R
dx n3ðxÞ=6 and the von Weizsäcker functional is

TW½n% ¼ R
dx n 0ðxÞ2=½8nðxÞ%. For N ¼ 1, the MAE of

Tloc on the test set is 217 kcal=mol, and the modified
gradient expansion approximation [19], TMGEA½n% ¼
Tloc½n% ' cTW½n%, has a MAE of 160 kcal=mol, where
c ¼ 0:0543 has been chosen to minimize the error (the
gradient correction is not as beneficial in 1D as in 3D).
For TML, both the mean and maximum absolute errors
improve as N or M increases (the system becomes more
uniform as N ! 1 [3]). At M ¼ 80, we have already

FIG. 2 (color online). The shaded region shows the extent of
variation of nðxÞ within our data set for N ¼ 1. Exact (red, solid)
and a self-consistent (black, dashed) density for potential of Fig. 3.

FIG. 1 (color online). Comparison of a projected (see within)
functional derivative of our MLA with the exact curve.
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model selection, projected functional derivatives, OF-DFT

bond breaking, self-consistent densities
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ab-initio MD, active learning

Challenges for DFT

• Orbital-free DFT

residues near the entrance and exit of the pore that favor
or disfavor the passage of ions solely based on their charge
[32].

Acid-sensing ion channels (ASICs) are cation channels
whose gating is controlled by extracellular pH. Equi-
librium MD simulations of ASIC1 at different ionic
solutions and concentrations examining multiple titration
states of various acidic residues have been used to
identify potential proton and cation binding sites and
to study cation/H+-induced protein conformational
changes [33].

Membrane transporters and carriers
In contrast to membrane channels that provide a passive
permeation pathway for their substrates, transport in
membrane transporters is mediated by close interaction
and engagement of the protein and the substrate. This is
necessary owing to the active (energy-dependent) nature
of the transport process during which the energy provided
by various sources, for example, ATP hydrolysis or an
ionic gradient across the membrane, is used to actively
‘pump’ the substrate across the membrane, often against
its electrochemical gradient. Shown in Figure 3, mem-
brane transporters are structurally much more diverse
than membrane channels, as they need to harvest various
sources of energy in the cell and efficiently couple them
to substrate transport. They are also far slower than
channels, since several stepwise protein conformational
changes of various magnitude are usually involved in their
mechanism. Along with the recent availability of struc-
tures for several different membrane transporters, MD
simulations have been employed to investigate dynamical
properties and details of the mechanism of function.
Although the time scale of the entire transport cycle

proves to be usually beyond the reach of transporter
MD simulations, such simulations have proven successful
in describing individual steps and transitions involved in
such cycles.

ABC transporters
ATP-binding cassette (ABC) transporters use ATP to
drive active transport of substrates across the membrane.
ATP binding and hydrolysis in the nucleotide binding
domains (NBDs) drive conformational changes of the
transmembrane domains (TMDs), thus switching sub-
strate accessibility between the cytoplasmic and extra-
cellular sides of the membrane. Elucidating the
conformational changes induced by ATP binding and
hydrolysis in the NBDs and the coupling of NBDs and
TMDs constitute two major themes in simulation studies
of ABC transporters.

The dimeric structures of the NBDs of maltose transpor-
ter (MalK) and an archaeal ABC transporter (MJ0796)
have been extensively used in simulation studies. Earlier
MD simulations of MalK performed on the three crystal
forms of MalK verified the nucleotide dependence of
opening and closing of the NBDs [34]. Simulations on the
order of 20 ns performed on different nucleotide-bound
forms of MJ0796 identified the rotation of the helical
subdomain as the primary response to ATP replacement
by ADP [35], while longer simulations (30–50 ns) were
employed to investigate the mechanism of dimer separ-
ation [36]. Using even longer simulations (! 70 ns) of
MalK, and through simulating the immediate effect of
ATP hydrolysis (conversion to ADP-Pi), it was proposed
that the hydrolysis reaction itself is the initial trigger for
dimer opening [37]. It was also shown that despite the
presence of two nucleotide-binding sites, only one ATP

132 Theory and simulation

Figure 3

Membrane transporters studied recently. Shown in the same format as in Figure 1, each transporter is colored according to domain with substrates
and direction of transport indicated. These transporters are found in a variety of cellular membranes including the cytoplasmic membrane (e.g.
MalEFGK), the bacterial outer membrane (BtuB), and the mitochondrial inner membrane (AAC).

Current Opinion in Structural Biology 2009, 19:128–137 www.sciencedirect.com

Current Opinion in Structural Biology 2009, 19:128–137
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D.  Recent results
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2 new papers

• By-passing the KS equations with ML (acc Nat Comm)
– Felix Brockherde, Li Li, Klaus Muller, KB,…
– Avoids functional derivative
– Applied in 3D
– Still doing KS problem, Ts[n]

• Pure Density Functional for Strong Correlations and the 
Thermodynamic Limit Using Machine Learning. in Phys 
Rev B.
– Li Li, Thomas E. Baker, Steven R. White and KB
– Do interacting functional (ie. Exact EXC)
– Do strong correlation
– Do thermodynamic limit
– Still in 1d
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Machine-learned approximations

By-passing the Kohn-Sham equations with machine learning1
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Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory14

to solve electronic structure problems in a wide variety of scientific fields, ranging from materials15

science to biochemistry to astrophysics. Machine learning holds the promise of learning the kinetic16

energy functional via examples, by-passing the need to solve the Kohn-Sham equations. This should17

yield substantial savings in computer time, allowing either larger systems or longer time-scales to18

be tackled. However, attempts to machine-learn this functional have been limited by the need to19

find its derivative. The present work overcomes this di�culty by directly learning the density-20

potential and energy-density maps for test systems and various molecules. Both improved accuracy21

and lower computational cost with this method is demonstrated by reproducing DFT energies for22

a range of molecular geometries generated during molecular dynamics simulations. Moreover, the23

methodology could be applied directly to quantum chemical calculations, allowing construction of24

density functionals of quantum-chemical accuracy.25

INTRODUCTION26

Kohn-Sham density functional theory[1] is now enor-27

mously popular as an electronic structure method in a28

wide variety of fields[2]. Useful accuracy is achieved with29

standard exchange-correlation approximations, such as30

generalized gradient approximations[3] and hybrids[4].31

Such calculations are playing a key role in the materi-32

als genome initiative[5], at least for weakly correlated33

materials[6].34

There has also been a recent spike of interest in ap-35

plying machine learning (ML) methods in the physical36

sciences[7–11]. The majority of these applications involve37

predicting properties of molecules or materials from large38

databases of KS-DFT calculations[12–14]. A few applica-39

tions involve finding potential energy surfaces within MD40

simulations[15–17]. Fewer still have focussed on finding41

the functionals of DFT as a method of performing KS42

electronic structure calculations without solving the KS43

equations[18–21]. If such attempts could be made practi-44

cal, the possible speed-up in repeated DFT calculations45

of similar species, such as occur in ab initio MD simula-46

tions, is enormous.47

A key di�culty has been the need to extract the48

functional derivative of the non-interacting kinetic en-49

ergy. The non-interacting kinetic energy functional Ts[n]50

of the density n is used in two distinct ways in a KS51

calculation[1], as illustrated in Fig. 1: (i) its functional52

derivative is used in the Euler equation which is solved53

in the self-consistent cycle and (ii) when self-consistency54

is reached, the ground-state energy of the system is cal-55

culated by E[n], an Orbital-Free (OF) mapping. The56

solution of the KS equations performs both tasks ex-57

actly. Early results on simple model systems showed58

that machine learning could provide highly accurate val-59

ues for Ts[n] with only modest amounts of training[18],60

but that the corresponding functional derivatives are too61

noisy to yield su�ciently accurate results to (i). Subse-62

quent schemes overcome this di�culty in various ways,63

but typically lose a factor of 10 or more in accuracy[20],64

and their computational cost can increase dramatically65

with system complexity.66

Here we present an alternative ML approach, in which67

we replaced the Euler equation by directly learning the68

Hohenberg-Kohn (HK) map v(r) ! n(r) (red line in69

Fig. 1a) from the one-body potential of the system of70

interest to the interacting ground-state density, i.e. we71

establish an ML-HK map. We show that this map can72

be learned at a much more modest cost than either previ-73

ous ML approaches to find the functional and its deriva-74

tive (ML-OF) or direct attempts to model the energy as a75

functional of v(r) (ML-KS). Furthermore we show that it76

can immediately be applied to molecular calculations, by77

calculating the energies of small molecules over a range78

of conformers. Moreover, since we have already imple-79

mented this approach with a standard quantum chemical80

code (Quantum Espresso[22]) using a standard DFT ap-81

proximation (PBE), this can now be tried on much larger82

scales.83

The ML-HK map reflects the underlying computa-84
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By-passing KS
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Performance of ML for HK map: Box problem

Kieron Burke MARVEL lecture 48

4

ML-OF ML-HK (grid) ML-HK (other)

�E �EF �ED �E �ED �EML
D �ED (Fourier) �ED (KPCA)

M MAE max MAE max MAE max MAE max MAE max MAE max MAE max MAE max

20 7.7 47 7.7 60 8.8 87 3.5 27 0.76 8.9 9.7 70 0.58 8 0.15 2.9
50 1.6 30 1.3 7.3 1.4 31 1.2 7.1 0.079 0.92 0.27 2.4 0.078 0.91 0.011 0.17

100 0.74 17 0.2 2.6 0.75 17 0.19 2.1 0.027 0.43 0.18 2.4 0.031 0.42 0.0012 0.028
200 0.17 2.9 0.039 0.6 0.17 2.9 0.042 0.59 0.0065 0.15 0.02 0.46 0.017 0.14 0.00055 0.015

Table I. Energy errors in kcal/mol for the 1-D data set for various M , the number of training points. For definitions, see text.

total energy functional based on the gradient of the ML196

model TML
s ,197

n(j+1) = n(j) � ✏P
⇣
n(j)

⌘ �

�n
EML(n(j)), (6)

where ✏ is a small number, v is the discretized potential,
�x is the grid spacing and P (n(j)) is a localized PCA
projection to de-noise the gradient. Here and for all fur-
ther 1-D results we use

EML[n] = TML
s [n] +

Z
dx v(x)n(x). (7)

The density-driven contribution to the error �ED, which198

we calculate exactly here using the von Weizsäcker ki-199

netic energy[30] is always comparable to, or greater than,200

the functional-driven error �EF , due to the poor quality201

of the ML functional derivative[18]. The calculation is202

abnormal, and can be greatly improved by using a more203

accurate density. As the number of training points M204

grows, the error becomes completely dominated by the205

error in the density. This shows that the largest source206

of error is in using the ML approximation to Ts to solve207

the Euler equation to find the density.208

The next set of columns analyzes the ML-HK ap-209

proach, using a grid basis. The left-most of these columns210

shows the energy error we obtain by utilizing the ML-HK211

map:212

�E = |EML[nML[v]]� E|. (8)

Note that both ML models, TML
s and nML, have been213

trained using the same set of M training points.214

The ML-HK approach is always more accurate than215

ML-OF, and its relative performance improves as M in-216

creases. The next column reports the density-driven er-217

ror �ED which is an order-of-magnitude smaller than for218

ML-OF. Lastly, we list an estimate to the density-driven219

error220

�EML
D = |EML[nML[v]]� EML[n]|, (9)

which uses the ML model TML
s for the kinetic energy221

functional in 1-D. This proxy is generally a considerable222

overestimate (a factor of 3 too large), so that the true223

�ED is always significantly smaller. We use it in subse-224

quent calculations (where we cannot calculate TML
s ) to225

(over-)estimate the energy error due to the HK-ML map.226

The last set of columns are density-driven errors for227

other basis sets. Three variants of the ML-HK map were228

tested. First, direct prediction of the grid coe�cients:229

In this case, u(l)
i = ni(xl), l = 1, . . . , G. This variant is230

tested in 1-D only; in 3-D the high dimensionality will231

be prohibitive. 500 grid points were used, as in Snyder232

et al. [18]. Second, a common Fourier basis is tested.233

The density can be transformed e�ciently via the dis-234

crete Fourier transform, using 200 Fourier basis functions235

in total. In 3-D these basis functions correspond to plane236

waves. The back-projection u 7! n to input space is sim-237

ple, but although the basis functions are physically moti-238

vated, they are very general and not specifically tailored239

to density functions. The performance is almost identi-240

cal to the grid on average, although maximum errors are241

much less. For M = 20, the error that originates from242

the basis representation starts to dominate. This is a243

motivation for exploring, third, a Kernel PCA (KPCA)244

basis[31]. KPCA[32] is a popular generalization of PCA245

that yields basis functions that maximize variance in a246

higher dimensional feature space. The KPCA basis func-247

tions are data-driven and computing them requires an248

eigen-decomposition of the Kernel matrix. Good results249

are achieved with only 25 KPCA basis functions. The250

KPCA approach gives better results because it can take251

the non-linear structure in the density space into account.252

However, it introduces the pre-image problem: It is not253

trivial to project the densities from KPCA space back to254

their original (grid) space (see supplement). It is thus255

not immediately applicable to 3-D applications.256

Molecules257

We next apply the ML-HK approach to predict elec-
tron densities and energies for a series of small molecules.
We test the ML models on KS-DFT results ob-

Understanding and reducing errors in density functional calculations Min-
Cheol Kim, Eunji Sim, Kieron Burke, Phys. Rev. Lett. 111, 073003 (2013).

http://link.aps.org/doi/10.1103/PhysRevLett.111.073003
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ML-KS ML-HK

�E �Ro �✓0 �E �EML
D �Ro �✓0

Molecule M MAE max MAE max MAE max

5 1.3 4.3 2.2 - 0.70 2.9 0.18 0.54 1.1 -
H2 7 0.37 1.4 0.23 - 0.17 0.73 0.054 0.16 0.19 -

10 0.080 0.41 0.23 - 0.019 0.11 0.017 0.086 0.073 -

H2O

5 1.4 5.0 2.1 2.2 1.1 4.9 0.056 0.17 2.3 3.8
10 0.27 0.93 0.63 1.9 0.12 0.39 0.099 0.59 0.12 0.38
15 0.12 0.47 0.19 0.41 0.043 0.25 0.029 0.14 0.064 0.23
20 0.015 0.064 0.043 0.16 0.0091 0.060 0.011 0.058 0.024 0.066
25 0.012 0.073 0.033 0.12 0.013 0.085 0.0081 0.043 0.012 0.16

Table II. Prediction errors on H2 and
H2O with increasing number of train-
ing points M for the ML-KS and ML-
HK approaches. In addition, the esti-
mated density-driven contribution to
the error for the ML-HK approach
(Eq. 9) is given. Energies in kcal/mol,
bond-lengths in pm, and angles in de-
grees.
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Figure 2. Top. Distribution of energy errors against PBE
on the H2O dataset for ML-KS and ML-HK. The errors are
plotted on a symmetric log scale with linear threshold of 0.01,
using nearest neighbor interpolation from a grid scan for col-
oring. Black dots mark the test set geometries with averaged
bond lengths. Bottom left. Comparison of the PBE er-
rors made by ML-HK and ML-KS on the test set geometries.
Bottom right. Energy landscape of the ML-HK map for
symmetric geometries (R versus ✓). All models trained on
M = 15 training points. Energies and errors in kcal/mol. A
black cross marks the PBE equilibrium position.

the ML-HK map is consistently more precise than the345

ML-KS map, and provides an improved potential energy346

surface, as shown in Fig. 2. With an MAE of 1.2 kcal/mol347

for PBE energies relative to CCSD(T) calculations for348

this data set, we again show that ML does not introduce349

a new significant source of error.350

The MLmaps can also be used to find the minimum en-351

ergy configuration. The total energy is minimized as the352

geometry varies with respect to both bond lengths and353

angles. For optimization, we use Powell’s method [38],354

which requires a starting point and an evaluation func-355

tion to be minimized. For the H2O case, the search is re-356

stricted to symmetric configurations, with a random sym-357

metric geometry used as the starting point. Results are358

reported in Table II. The optimizations consistently con-359

verge to the correct minima regardless of starting point,360

consistent with the maps being convex, i.e., the potential361

energy curves are su�ciently smooth as to avoid intro-362

ducing artificial local minima.363

For larger molecules, generating random conformers364

that sample the full configurational space becomes dif-365

ficult. Therefore, we next demonstrate that molecular366

dynamics (MD) using a classical force field can also be367

used to create the grand training set. As an example, we368

use benzene (C6H6) with only small fluctuations in atomic369

positions out of the molecular plane. Appropriate con-370

formers are generated via isothermal MD simulations at371

300 K, 350 K, and 400 K using the General Amber Force372

Field (GAFF)[39] in the PINY MD package[40]. Sav-373

ing snapshots from the MD trajectories generates a large374

set of geometries that are sampled using the K-means ap-375

proach to obtain 2,000 representative points for the grand376

training set. Training nML[v] and EML[n] is performed as377

above by running DFT calculations on M = 2000 points.378

We find that the ML error is reduced by creating the379

training set from trajectories at both the target temper-380

ature and a higher temperature to increase the represen-381

tation of more distorted geometries. The final ML model382

is tested on 200 conformational snapshots taken from an383

independent MD trajectory at 300 K (see Fig. 3a). The384

MAE of the ML-HK map for this data set using train-385

ing geometries from 300 K and 350 K trajectories is only386

0.37 kcal/mol for an energy range that spans more than387

10 kcal/mol (see Table III).388

For benzene, we further quantify the precision of the389

ML-HK map in reproducing PBE densities. In Fig. 4, it390

is clear that the errors in the Fourier basis representation391

are larger than the errors introduced by the ML-HK map392



MD simulations testing ML method
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Figure 4. The precision of our density predictions using the Fourier basis for ML-HK for the molecular plane of benzene. The
plots show a. the di↵erence between the valence density of benzene when using PBE and LDA functionals at the PBE optimized
geometry. b. error introduced by using the Fourier basis representation. c. error introduced by the nML[v] density fitting (a.
- c. on same color scale). d. the total PBE valence density e. the density di↵erences along a 1-D cut of a. - c. f . the density
error introduced with the ML-HK map (same data, but di↵erent scale, as in c.).

Our new method, directly learning the Hohenberg-497

Kohn density-potential map, overcomes a key bottle-498

neck in previous methodologies, that only became appar-499

ent when going beyond 1D calculations. This approach500

avoids solving an intermediate more general problem (the501

gradient descent) to find the solution of the more specific502

problem (finding the ground-state density). This is called503

transductive inference by the machine learning commu-504

nity and is thought to be key to successful statistical505

inference methods[41].506

We also confirmed that following a direct prediction507

approach with the ML-HK map increases the accu-508

racy consistently on both 1-D examples and small 3-D509

molecules. We are also able to learn density models that510

outperform energy models trained on much more training511

data. This quantitative observation allows us to conclude512

that learning density models is much easier than learning513

energy models. Such a finding should be no surprise to514

practitioners of the art of functional construction (see,515

e.g., [25]), but the present work quantifies this observa-516

tion using standard statistical methods. As the ML-HK517

map accurately reflects the training densities, more exact518

methods could also be used to generate the training set519

densities for functional development.520

We have also derived a way to use basis functions to521

make the approach computationally feasible. This makes522

it easier to integrate the method into existing DFT codes.523

Another advantage is the possibility to take the innate524

structure of the densities into account, i.e. spatial corre-525

lations are preserved by using low frequency basis func-526

tions. Again, this fits with the intuition of experienced527

practitioners in this field, but here we have quantified528

this in terms of machine-learned functionals.529

Direct prediction of energies (e.g., the ML-KS map)530

always has the potential to lead to conceptually easier531

methods. But such methods must also abandon the in-532

sights and e↵ects that have made DFT a practical and533

usefully accurate tool over the past half century. Many534

usefully accurate DFT approximations already exist, and535

the corrections to such approximations can be machine-536

learned in precisely the same way as the entire functional537

has been approximated here. If machine-learning correc-538

tions requires less data, the method becomes more pow-539

erful by taking advantage of existing successes. Further-540

more, existing theorems, such as the viral theorem[42],541

might also be used to directly construct the kinetic en-542



Malondialdehyde
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B175: By-passing the Kohn-Sham equations with machine learning Felix Brockherde, 

Leslie Vogt, Li Li, Mark E Tuckerman, Kieron Burke, Klaus-Robert M�uller, (to appear in 
Nature Communications) (2017).

http://arxiv.org/abs/1609.02815


Lessons

• Our 1d gradient methods become prohibitively 
expensive in 3d.

• Instead of using Ts[n], learn n[v](r).
• Much smarter than learning E[vs]
• Works for H2 and H2O and …
• ..MD of malonaldehyde using ML forces with 

Leslie Vogt and Mark Tuckerman.
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C.  ML for the exact functional
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1d electronic structure

• Use DMRG to solve continuum problems in 1d.
• Much success in past, showing failures of DFT 

approximations for strong correlation.
• Here we use DMRG to generate much data of 

exact densities and  energies
• All restricted to 1d.
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Guaranteed Convergence of the Kohn-Sham Equations 
Lucas O. Wagner, E. M. Stoudenmire, Kieron Burke, Steven 
R. White, Phys. Rev. Lett. 111, 093003 (2013).

One-Dimensional Continuum Electronic Structure with the 
Density-Matrix Renormalization Group and Its Implications 
for Density-Functional Theory E.M. Stoudenmire, Lucas O. 
Wagner, Steven R. White, Kieron Burke, Phys. Rev. Lett. 
109, 056402 (2012).



ML on exact chains of 1d H

• We train and test a machine learning F[n], the 
universal part of the electronic density 
functional, to within quantum chemical 
accuracy. We 
– bypass the standard Kohn-Sham approach
– include the strong correlation of highly-stretched 

bonds 
– create a model for the infinite chain limit. 
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Then a subset of these data are left out as test set.
The training set, with NT values of R, are collected from
the remaining data. These are chosen to be as close to
equally spaced as practical. The test set is excluded from
the data where the training set is sampled from, to avoid
contamination via the cross-validation process.

A. Machine-learned functional for a given molecule

FIG. 3. (Color online) Same as Fig. 2. The green curves
are ML with NT = 5 on both the exact (dashed) and ML-
optimized (solid) densities. The red solid curve is the ML
with NT=20 on ML-optimized (solid) densities. Black dashed
curve is the exact DMRG curve, matching nearly exactly the
NT=20 on ML line.

We continue to use the H2 molecule to illustrate our
method. Contrary to previous work, we apply KRR al-
gorithms to ML the interacting functional F [n] itself, by
training on highly accurate DMRG energies and densities
at various values of R. In Table I, we list the errors for
H2 as a function of NT, both on the exact density and on
an optimally constrained density found by the methods
of Ref. [35].

To illustrate the procedure, in Fig. 3, we show
the energies with only 5 training points, R =
1.00, 3.20, 5.48, 7.76, 10.00, yielding the smooth, green
dashed curve, when evaluated on the exact densities. The
curve (almost) exactly matches at the training points,
but is noticeably inaccurate inbetween. But note that,
in contrast to all previous studies, we are fitting the full
F [n], not just TS[n], so that, e.g., our inaccurate curve
dissociates H2 correctly, while no standard DFT calcula-
tion, with a standard XC approximation, can.

The problem is actually much greater than even the
smooth dashed green curve would suggest. In practice,
we not only need the energy functional, but also its
derivative, at least in the vicinity of a solution density.
This is because we use the functional to find the density
itself, via the Euler equation

�F

�n(x)
= �v(x). (10)

FIG. 4. (Color online) Optimal densities for 1d H2 molecule in
the test set: DMRG (black dashed), ML with NT=5 (orange
solid), ML with NT=20 (red solid).

In fact, the derivatives of ML functionals such as that of
Eq (6) are highly inaccurate and cannot be used to find
the minimizing density. Methods have been developed
to constrain the search to the manifold of training data
via non-linear gradient denoising (NLGD) [35]. For our
H2 with NT = 5, these lead to the (even worse) solid
green curve of Fig. 3. The optimal density is shown in
Fig. 4. We clearly see that (a) the accuracy is not high
enough and (b) the error is dominated by the error in the
densities. (This is called a density-driven error [36] in a
DFT calculation.)
However, when we increase to 20 data points, the ML

curve (red solid) is indistinguishable from the exact one,
and the error at equilibrium is only 0.007 kcal/mol, and
shrinks with increasing R. This calculation applies all the
principles discussed in Ref. 13, but is now applying them
to the many-body problem, not just the KS problem.
Even in the stretched limit, where the system is strongly
correlated, there is no loss of accuracy. Note that we are
not just fitting the binding curve, as we are reproducing
the many-body density at every value of R, starting from
data at a limited number of values. In Fig. 4, we plot the
optimally-constrained densities at R = 4.0 (outside all
training sets) for NT = 5 and NT = 20, compared with
the exact density.
Here, ML has entirely bypassed the di�culty of solv-

ing the many-fermion problem. The machine learns the
characteristics of the solution without ever solving the
di↵erential equation. Moreover, the HK theorem is a
statement of the minimal information needed to char-
acterize the ground-state of the system. In some ways,
this ML approach is the purest embodiment of the HK
theorem.

B. Finding a data-driven optimal basis for longer
chains

The cost of optimal gradient descent methods, evalu-
ated on a spatial grid, grows very rapidly with the num-

2

problem at the same level of accuracy. Fig. 1 shows the
convergence of our ML method for a typical separation
of the infinite chain with respect to the number of train-
ing points. The horizontal lines show two independent
DMRG estimates of the energy.

II. BACKGROUND

A. DFT

The Hohenberg-Kohn theorem [10] establishes that the
ground-state energy and density of a many-body problem
may be found by minimizing a density functional:

E = min
n

⇢
F [n] +

Z
d3r n(r) v(r)

�
, (1)

where n(r) is the single-particle density, normalized to
N particles, and v(r) is the one-body potential. The
functional F can be defined via a constrained search as
[24]

F [n] = min
 !n

h | T̂ + V̂ee| i (2)

where T̂ is the kinetic energy operator and Vee is the
electron-electron repulsion operator, while  is a normal-
ized antisymmetric (for fermions) wavefunction. While
this showed that the old Thomas-Fermi theory [8, 9, 25]
was an approximation to an exact formulation, few mod-
ern calculations perform such a direct minimization. In
practice, almost all calculations use the famous Kohn-
Sham (KS) scheme, which uses an auxillary set of non-
interacting orbitals in a single, multiplicative potential
whose density is defined to match that of the original
system, and in terms of which we can write

F [n] = TS[n] + U [n] + EXC[n], (3)

where TS is the non-interacting kinetic energy of the KS
electrons, U is the Hartree self-repulsion, and EXC is the
exchange-correlation energy (defined by this equation).

The genius of the KS formulation is that EXC is typi-
cally a small fraction of F , so that much higher accuracy
can be achieved by approximating only this component.
The cost of the KS scheme is formally N3, the cost of
solving for the orbitals. Much of modern DFT research
is devoted to improving approximations to EXC, within
which all quantum-many body e↵ects are contained (by
definition). The smaller field of pure DFT, also known
as ‘orbital-free’, aspires to approximate TS[n] directly, as
in the old TF theory [8, 26], and thus bypass the need to
solve the KS equations.

Many modern XC approximations are local or semilo-
cal, i.e., use the density and its gradient to approximate
the XC energy density at a point. While remarkably
useful results can be obtained with such approximations,
there remains a classic failure that can be understood in

FIG. 2. (Color online) Binding curve for a 1d H2 molecule.
Black: highly accurate, converged DMRG results. Blue: LDA
result restricted to a spin singlet [23].

terms of the simple H2 molecule [27]. Those approxima-
tions work well in the vicinity of the equilibrium bond
length, but as the bond is stretched, they fail more and
more badly. In the limit of a large but finite bond length
(which we call stretched), a spin-restricted calculation
yields the highly inaccurate energy of two unpolarized
H atoms. On the other hand, an unrestricted calcula-
tion yields an accurate stretched energy, but has broken
spin symmetry. Neither situation is satisfactory [4], and
most modern approximations fail in this way. An analo-
gous failure occurs for semilocal approximations to TS[n]
when bonds are stretched in orbital-free DFT. Fig. 2 il-
lustrates the failure of semilocal XC, by comparing the
blue restricted LDA curve with the black DMRG curve.
There is a huge error in the stretched limit.

B. DMRG benchmark data

It is di�cult to overemphasize the utility of bench-
mark quantum chemical calculations for the development
of DFT. The DFT revolution in quantum chemistry was
made possible by the existence of the well-tested G2 data
set for small molecules, and databases in quantum chem-
istry have proliferated ever since. On the other hand,
calculations of ‘quantum chemical’ accuracy, i.e., errors
below 1 kcal/mol, are much more di�cult and rarer for
solids. A recent heroic e↵ort [28] was made for benzene,
a molecular crystal.
For the present study, we need to consider chains of

up to 20 H atoms, with many di↵erent values of the in-
teratomic spacing ranging from about 1 to 10 Bohr. Ex-
tracting this large amount of data at the required level
of accuracy from a quantum chemical code would be ex-
tremely demanding, if not impossible, given the strong
correlation e↵ects when the bonds are stretched.
Recently, DMRG has been applied to a one-

dimensional analog of real-space Coulomb-interacing
Hamiltonians, for precisely the purpose of performing
demanding, highly accurate benchmark calculations of
strongly correlated systems. In particular, the interac-
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Then a subset of these data are left out as test set.
The training set, with NT values of R, are collected from
the remaining data. These are chosen to be as close to
equally spaced as practical. The test set is excluded from
the data where the training set is sampled from, to avoid
contamination via the cross-validation process.

A. Machine-learned functional for a given molecule

FIG. 3. (Color online) Same as Fig. 2. The green curves
are ML with NT = 5 on both the exact (dashed) and ML-
optimized (solid) densities. The red solid curve is the ML
with NT=20 on ML-optimized (solid) densities. Black dashed
curve is the exact DMRG curve, matching nearly exactly the
NT=20 on ML line.

We continue to use the H2 molecule to illustrate our
method. Contrary to previous work, we apply KRR al-
gorithms to ML the interacting functional F [n] itself, by
training on highly accurate DMRG energies and densities
at various values of R. In Table I, we list the errors for
H2 as a function of NT, both on the exact density and on
an optimally constrained density found by the methods
of Ref. [35].

To illustrate the procedure, in Fig. 3, we show
the energies with only 5 training points, R =
1.00, 3.20, 5.48, 7.76, 10.00, yielding the smooth, green
dashed curve, when evaluated on the exact densities. The
curve (almost) exactly matches at the training points,
but is noticeably inaccurate inbetween. But note that,
in contrast to all previous studies, we are fitting the full
F [n], not just TS[n], so that, e.g., our inaccurate curve
dissociates H2 correctly, while no standard DFT calcula-
tion, with a standard XC approximation, can.

The problem is actually much greater than even the
smooth dashed green curve would suggest. In practice,
we not only need the energy functional, but also its
derivative, at least in the vicinity of a solution density.
This is because we use the functional to find the density
itself, via the Euler equation

�F

�n(x)
= �v(x). (10)

FIG. 4. (Color online) Optimal densities for 1d H2 molecule in
the test set: DMRG (black dashed), ML with NT=5 (orange
solid), ML with NT=20 (red solid).

In fact, the derivatives of ML functionals such as that of
Eq (6) are highly inaccurate and cannot be used to find
the minimizing density. Methods have been developed
to constrain the search to the manifold of training data
via non-linear gradient denoising (NLGD) [35]. For our
H2 with NT = 5, these lead to the (even worse) solid
green curve of Fig. 3. The optimal density is shown in
Fig. 4. We clearly see that (a) the accuracy is not high
enough and (b) the error is dominated by the error in the
densities. (This is called a density-driven error [36] in a
DFT calculation.)
However, when we increase to 20 data points, the ML

curve (red solid) is indistinguishable from the exact one,
and the error at equilibrium is only 0.007 kcal/mol, and
shrinks with increasing R. This calculation applies all the
principles discussed in Ref. 13, but is now applying them
to the many-body problem, not just the KS problem.
Even in the stretched limit, where the system is strongly
correlated, there is no loss of accuracy. Note that we are
not just fitting the binding curve, as we are reproducing
the many-body density at every value of R, starting from
data at a limited number of values. In Fig. 4, we plot the
optimally-constrained densities at R = 4.0 (outside all
training sets) for NT = 5 and NT = 20, compared with
the exact density.
Here, ML has entirely bypassed the di�culty of solv-

ing the many-fermion problem. The machine learns the
characteristics of the solution without ever solving the
di↵erential equation. Moreover, the HK theorem is a
statement of the minimal information needed to char-
acterize the ground-state of the system. In some ways,
this ML approach is the purest embodiment of the HK
theorem.

B. Finding a data-driven optimal basis for longer
chains

The cost of optimal gradient descent methods, evalu-
ated on a spatial grid, grows very rapidly with the num-



Vital issue in ML: Representation of data

• We want to calculate F[n] sufficiently accurately 
to solve Euler equation directly for the density.

• Have all those problems with functional 
derivative.

• Amount of data needed explodes as chain 
length increases.

• Need better representation for the data.
• Li’s thesis problem.
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Facial recognition via PCA
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Mean face
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Plus one principal component
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Plus two
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Plus three
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Plus four
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Plus 5
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Plus 6
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Plus 7
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PCA basis for atomic densities
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ber of grid points, and rapidly becomes unfeasible as the
number of H atoms grows. Thus a simpler representation
of the density is required. To overcome those di�culties,
we introduce a basis set. Inspired by the localized atomic
bases used in most quantum chemical codes, we devel-
oped a data-driven basis set using Hirshfeld partitioning
[37] and principal component analysis (PCA).

FIG. 5. Partition density of each H atom in H8.

FIG. 6. Single H atom densities for H atoms in di↵erent
chains and atomic distance (gray). The average density is
plotted in red.

To partition a molecular density via the Hirshfeld
scheme, begin with the protomolecule of overlapped
atomic densities at the nuclear positions of the real
molecule. If n0

i (x) = n0
1(x�(i�1)R) is an isolated atomic

density at the i-th nuclear center, spaced R apart, then

n0(x) =
NX

i=1

n0
i (x) (11)

is the density of the protomolecule, where R is the inter-
atomic spacing. We define a weight

wi(x) = n0
i (x)/n

0(x), (12)

FIG. 7. First 7 principal components of the densities shown
in Fig. 6, from top to bottom.

associated with each atom, and then define the density
of each Hirshfeld atom within the real molecule as

ni(x) = wi(x)n(x), (13)

where n(x) is the exact molecular density. The ground
state density of a single hydrogen atom n0

i (x) is reported
in Ref. 23. Fig. 5 shows partition densities ni(x) of atoms
in one H8.
Next, for a specific chain length N , we consider a range

of interatomic separations R, and consider the collection
of every atomic density within the chain for every value of
R in a training set, each centered on the origin, as shown
in Fig. 6. These individual atomic partition densities re-
flect the diverse behaviors caused by the interaction be-
tween the hydrogen atoms inside the chains. A principal
component analysis is applied to these densities, and the
eigenvalues are ordered in decreasing magnitude to find a
subspace with the maximum variance. Each atomic den-
sity can be accurately represented by the base density
f0(x) (red in Fig. 6) and 7 principal components (Fig.
7),

ni(R, x) = f0(x) +
7X

p=1

ci,p(R)fp(x). (14)

Thus the total density of HN with separations R isPN
i ni(R, x), and is described by just 7N coe�cients.

Note that f0(x) is very close to an isolated atom density,
but we use the average to center our data for the PCA
analysis. Our representation greatly reduces the num-
ber of variables in the density representation for a given
chain length, and saves a significant amount of computa-
tional cost when solving for the ground state density of
the system. This new basis set is completely data-driven
and physically meaningful.

We next repeated these calculations for a sequence of
chains of increasing length. In each case, we train FML[n]
on a limited training set, and then compare on a test set
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of each Hirshfeld atom within the real molecule as

ni(x) = wi(x)n(x), (13)

where n(x) is the exact molecular density. The ground
state density of a single hydrogen atom n0

i (x) is reported
in Ref. 23. Fig. 5 shows partition densities ni(x) of atoms
in one H8.
Next, for a specific chain length N , we consider a range

of interatomic separations R, and consider the collection
of every atomic density within the chain for every value of
R in a training set, each centered on the origin, as shown
in Fig. 6. These individual atomic partition densities re-
flect the diverse behaviors caused by the interaction be-
tween the hydrogen atoms inside the chains. A principal
component analysis is applied to these densities, and the
eigenvalues are ordered in decreasing magnitude to find a
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analysis. Our representation greatly reduces the num-
ber of variables in the density representation for a given
chain length, and saves a significant amount of computa-
tional cost when solving for the ground state density of
the system. This new basis set is completely data-driven
and physically meaningful.

We next repeated these calculations for a sequence of
chains of increasing length. In each case, we train FML[n]
on a limited training set, and then compare on a test set
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N NT � � |�EF|/N max |�EF|/N |�E|/N max |�E|/N EML
R=9.8/N EDMRG

R=9.8 /N

2 5 1.0⇥ 10�8 1000 2.54 7.02 9.74 20.3 -421.291 -425.797

2 20 4.6⇥ 10�10 2.15 0.00121 0.00802 0.005 0.013 -425.785 -425.797

2 50 1.0⇥ 10�12 0.70 0.00003 0.00034 0.050 0.304 -425.798 -425.797

4 50 2.2⇥ 10�11 46.4 0.0021 0.016 0.005 0.017 -428.617 -428.620

8 50 1.0⇥ 10�4 2.15 0.011 0.31 0.28 1.68 -430.011 -430.032

12 50 1.0⇥ 10�12 0.46 0.0031 0.010 0.24 0.88 -430.502 -430.503

16 50 2.2⇥ 10�11 0.46 0.0042 0.012 0.08 0.41 -430.738 -430.738

20 50 2.2⇥ 10�11 0.46 0.0042 0.014 0.26 0.88 -430.880 -430.880

1 50 1.0⇥ 10�8 0.46 0.012 0.050 0.073 0.27 -431.447 -431.444

TABLE I. ML performance on di↵erent chains HN . NT is the size of training set. Regularization strength � and kernel length
scale � is the model hyperparameters selected by cross validation [14]. The functional driven error �EF /N [36] is tested on the
entire test set to show the overall accuracy. The total error �E/N is tested on the equilibrium test set to emphasize accuracy
around equilibrium position. ER=9.8/N shows that ML can get very accurate dissociation limit. All errors are given in kcal/mol.

FIG. 8. (Color online) Learning curves for several 1d H chains.
(a) ML using the total density. (b) ML using the bulk parti-
tion densities (see text).

(see supplementary material), with the accurate results
supplied by DMRG. The learning curves, i.e., error as a
function of NT, of chains of di↵ering length, are shown
in Fig. 10(a). The error typically decreases with amount
of training data, but for fixed NT, longer chains display
substantially larger errors. This is because the binding
energy curve changes more rapidly when the chain length
is increased.

In applied machine learning, feature engineering,
which uses domain knowledge of the data to improve the
e�ciency of ML algorithms, is a crucial step. Here, we
know that as the chain length increases, the central den-
sity should converge to a fixed value (thermodynamic
limit). We therefore choose the central two atomic den-
sities alone to use as a minimal input feature for learning
the energy of a given finite chain. The learning curves
for models trained only on this central partition density
are shown in Fig. 10(b). For chain lengths greater than
or equal to 12, substantially greater accuracy is reached
for a fixed amount of training data. Here we still use
the total density for N  8 and the bulk density for
N � 12. The model performance and hyperparameters
are presented in Table I.

C. Extrapolation to the thermodynamic limit

Our ultimate goal is to use ML to find the energy of
the infinite chain to within chemical accuracy, for all in-
teratomic separations. To do this, we first build a set
of infinite chain energies and densities. For each value
of R, we extrapolate both the density and energy of our
finite chains as a function of N . This then gives us a set
of data for the infinite chain that we can both train and
test on and gave rise to Fig. 1.
In an entirely separate calculation, we also performed

DMRG directly for the infinite chain, using the method of
McCulloch [38] for a four atom unit cell [39]. The system
is initialized by solving the equivalent finite size system
with box edges at R/2. As a part of the iDMRG algo-
rithm [38], a single unit cell is then inserted into the cen-
ter of the finite system and 15 sweeps are performed over
the inserted unit cell. The sequence is repeated–after
adding another unit cell–until convergence. We com-
pare these energies with the extrapolated values, find-
ing agreement to within 1 kcal/mol for all values of
R. This agreement validates our extrapolation proce-
dure. We find that, with 50 data points, the ML re-
sult, on the optimized density, also agrees to within 1
kcal/mol. Thus, armed with the 50-data-point machine
learned functional, one can self-consistently find the den-
sity and energy of the infinite chain to quantum chemical
accuracy.
Our final figure simply demonstrates that the error for

the infinite chain (and for all the ML calculations) is
almost entirely due to the error in the optimized density.
The functional-driven error [36] is the energy error made
on the exact density:

�EF = EML[n]� E[n] = FML[n]� F [n]. (15)

We see that, at any level of training, �EF is an order
of magnitude smaller than the final energy error on the
optimized density. Thus the error is density-driven but,
nonetheless, can be forced down to quantum chemical
limits with enough data.
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Pure density functional for strong correlations and the thermodynamic limit from 
machine learning Li Li, Thomas E. Baker, Steven R. White, Kieron Burke, Phys. Rev. 
B 94, 245129 (2016).



Lessons from this part

• Can learn exact functional from exact data.
• Can learn F[n] instead of Ts[n] so accurately you 

can even get density.
• Created a new data-driven basis by using 

atoms in molecules; greatly reduced 
computational cost.

• Extrapolate to infinite chain limit to within 1 
kcal/mol.

• No problem in principle to do in 3d.
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Abomination or breakthrough?

• ML functionals of this type are completely 
different from those we are used to.

• No way to check even simple conditions, such 
as positivity in domain of application.

• Working on incorporating exact conditions into 
ML functionals.

• They compliment the existing human-
functionals, but do not replace them.

• Real test: Generality
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Historical methods of functional development in density functional theory have been largely guided by
analytic conditions that constrain the exact functional one is trying to approximate. Recently, machine-
learned functionals have been created by interpolating the results from a small number of exactly solved
systems to unsolved systems that are similar in nature. For simple cases, using an exact condition,
we find improvements in the learning curves of machine-learned approximations. We also find that the
significance of the improvement depends on the nature of the interpolation manifold of the machine-
learned functional.

1. INTRODUCTION

Density functional theory (DFT) is a popular approach
to electronic structure calculations in both the material
sciences and chemistry [1, 2]. By approximating various
components of the energy of a quantum system with func-
tionals of the density, DFT bypasses the need to solve the
Schrödinger equation for the fully interacting problem. The
utility of DFT calculations are, in turn, critically dependent
upon the quality approximations to the energy of a system as
a functional of the density. Almost all modern calculations
employ the KS scheme [3], in which only the exchange-
correlation energy need be approximated as a functional of
the spin-densities.

Within the arena of density functional approximation de-
velopment, there is tension between the desire to derive ap-
proximations from general principles of quantum mechanics
(e.g., PBE [4]) versus fitting to known molecular and ma-
terials data (e.g., Minnesota functionals [5]). Functionals
derived from general principles tend to work well for pre-
dicting most properties of most systems [4, 6, 7], where as
functionals that are entirely or partially fit to empirical sys-
tems tend to perform better for properties for those specific
systems or similar ones [8].

Recently, an entirely new type of approximate functional
has been developed, using algorithms from the general area
of machine learning [9, 10]. Machine-learned density func-
tionals are empirical functionals that work by extrapolating
the exact values of the functional on a handful of densities
(training set) to predict the value of the functional on new
densities (test set). We emphasize that this empiricism is
very di↵erent from that previously used in DFT. In ML, the
functional is approximated in an intrinsically non-local fash-
ion, requiring many parameters (up to one million) [9], but
producing approximations with chemical accuracy on the
interpolation manifold, including especially process which
standard semilocal functionals fail at, such as stretched
bonds. Thus an ML non-interacting kinetic energy remains
accurate as a bond breaks [11] (unlike semilocal counter-
parts) while an ML XC energy can include strong correlation,
even in the thermodynamic limit [10]. (Besides finding den-
sity functionals, machine learning is more commonly used in

chemical and material science to make accurate predictions
of chemical and physical properties. [12–21])
This kind of DFT development raises a natural ques-

tion: are exact conditions, which are often built in to
human-based functionals, useful in the design of machine-
learning approximations? By manually imposing exact con-
ditions on machine-learned density functionals, one intro-
duces prior knowledge to the machine-learned functionals
that may foreseeably enable easier training. Among the
simplest, and most powerful, exact conditions in KS DFT
are those produced by coordinate scaling. Thus, the ex-
change energy functional scales in a simple way when the
density is squeezed or stetched:

EX[n� ] = � EX[n], n�(r) = �
3
n(�r) (1)

where � is a positive real number. All popular exchange
functionals satisfy this condition, and it determines the local
density approximation up to a constant [22].
So far, ML functionals have been designed without the

use of such conditions, in order to test principles and limita-
tions of ML construction of functionals in their most prim-
itive form. We can now phrase our question very precisely.
If we can impose a condition like Eq. (1) on an ML func-
tional, i.e., construct the functional so that the condition is
automatically satisfied, do we get a more accurate approxi-
mation for a given amount of data? We shall see that the
answer is typically yes, but whether that gain in accuracy is
signficant depends on the nature of interpolation manifold.
This papers is organized as follows. Sec 2 reviews the

formalism of Kohn Sham DFT and Machine learning. In this
section, we also discuss recent progress in applying machine
learning to DFT and standard systems which have been
used as a test of novel ideas in DFT. In Sec 3, we explain
in detail the methods used to generate reference densities
needed to use our ML formalism. In Sec 4, we present
results attained by applying machine learning algorithms to
these densities and compare the performance of a traditional
machine learned functional to one that satisfies an exact
scaling condition by construction. In Sec 5, we interpret our
results and o↵er an explaination in terms of a pair of simple
model systems. In Sec 6, we explain how these results may
improve the applicability of machine learned functionals and

1
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FIG. 2. (color online) The learning curves for functionals

trained on scaled (blue) and unscaled (red) densities for the

1D Hooke’s atom. Accuracy of 1 mH is denoted by the dashed
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FIG. 3. (color online) Same as Fig. 2, but for H2 densities.

Fig. 4 shows the densities of the 1D Hooke’s atom in
our set, both before and after scaling. It is apparent that
the densities become much more similar once they have
been scaled. The appearance of the double peak is a strong
correlation e↵ect, in which the two electrons are trying to
avoid one another. But the decay of the scaled density at
large |x| is the same for all cases. To reinforce this, we plot
l as a function of ! for each density, and TS (both with
and without scaling) as a function of !. Clearly the scaled
functional varies less and is easier to learn. Jake, need to
alter x scale on scaled density-plot, to run from -2 to 2

To quantify this, we plot in Fig. 5 the value of � for
each !, versus 1/

p
2!. The curve is close to a constant

(as it would be for the non-interacting case) and only varies
strongly from that as ! becomes small and the system be-
comes more strongly correlated. Lastly, in Fig. 6, we plot
both the unscaled and scaled KS kinetic energies for the 1D
Hooke’s atom. If the density were not changing shape, i.e.,
truly non-interacting, the unscaled energy would be linear,
and the scaled kinetic energy would be constant, as in our
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FIG. 4. (color online) The Hooke’s atom densities with di↵er-

ent ! are plotted before scaling (top) and after scaling (bot-

tom). The color of each lines indicates the value of !. No-

tably, the densities appear “more similar” to each other after

scaling.
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FIG. 5. We plot the scaling function, �, as a function of ! for

the Hooke’s atom.

toy example.
Now let us examine the same sequence of plots for the

1D H2 molecule as a function of R. Fig. 7 shows the
densities (both unscaled and scaled) for the sequence of
H2 densities, as a function of R. Now the reverse appears
true: The unscaled densities appear to change less (or no
more than) the scaled densities. As R increases, the scaled
densities change considerably. Moreover, even when the
densities are essentially indistinguishable from the sum of
atomic densities, the scaled density continues to shrink in
extent around the two centers as R increases, i.e., the scaled
densities continue to change with R, even when R is very
large.
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FIG. 7. (color online) The H2 densities considered are plotted
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appear to be made more similar by scaling.
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FIG. 9. (color online) The non-interacting kinetic energies as

a function of the atomic separation, R, before scaling (red)

and after scaling (blue) for the set of H2 densities. Scaling ex-

acerbates di↵erences in kinetic energies between points, par-

ticularly at large R.

Of course, appearances are not definitive proof, so we
quantify this e↵ect. Fig. 8 shows � for di↵erent values of
R. Comparing to Fig. 5, we see that � appears to vary
linearly with R as R increases, instead of approaching a
constant. When we plot the unscaled and scaled kinetic
energies in Fig. 9, we see that, in sharp contrast to Fig. 8,
now the scaled kinetic energy varies more over the range of
densities than the unscaled one. Thus, it is not surprising
that scaling is little or no help in this case.

6. DISCUSSION

We see that, for the contact interacting one-dimensional
Hooke’s atom described above, it is advantageous to ma-
chine learn the scaled non-interacting energy and use exact
conditions to relate this to the unscaled non-interacting ki-
netic energy, rather than machine learn the unscaled non-
interacting kinetic energy directly. Furthermore, this re-
sult does not extend to set of one-dimensional H2 densities,
where both methods of machine learning the non-interacting
kinetic energy have relatively similar performance.
To understand the system-dependence of the improved

performance, we analyze the densities plotted in Fig. 4 and
Fig. 7. We see that, for the Hooke’s atom, the densities in
the reference data set are approximately scaled versions of
each other. Explicitly, as ! increases, the peaks in the den-
sity shift away from the origin and become broader. Scaling
the densities reverses the e↵ect of this trend, creating new
densities that may be more meaningfully compared. In con-
trast, for H2, the densities in the reference data set do not
resemble scaled versions of each other. As R increases, the
peaks in the density shift away from the origin, but they do
not broaden. As such, scaling these densities will make the
densities more similar by aligning the peaks of the densities,
but will artificially make them more dissimilar by broade-
nening or narrowing the width of the peaks.
We can understand the poor performance of the exact

condition for stretched H2 as follows. Consider a model of
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helps the model generalize well on out-of-sample data. They
are determined by cross-validation, a process where part of
the training set, known as the validation set, is hidden from
the model during training. In this work, we perform leave
one out cross validation, meaning that, for a training set of
NT densities, we train on a set of NT � 1 densities, and
the remaining density forms the validation set. We pick
the pair of � and � that produce the lowest error on the
validation set. Then, we rotate the data point being used
in the validation set, eventually forming a set of NT best
values for � and �. We then pick the median value of each
to parameterize our model, and retrain the model using the
full training set.

KRR functionals are entirely non-local. Thus, they can
describe e↵ects due to non-local behavior of the exact func-
tional that are unable to be reproduced by semilocal func-
tionals. For example, KRR approximations to F [n] are able
to reproduce the dissociation curve of H2 [10], whereas ap-
proximations to F [n] that use a semilocal EXC approxima-
tion are unable to reproduce this result.

C. Progress with ML-DFT

Most of the work, like that reported here, involves
the non-interacting kinetic energy functional. The non-
interacting kinetic energy functional, defined in Eq. (5),
typically requires one to solve the Kohn-Sham equation be-
fore evaluation. However, nearly every KS DFT calcula-
tion performed solves the Kohn-Sham equations and thus
can serve as data to train a machine-learned kinetic en-
ergy functional, which would enable later calculatins to be
orbital-free.

D. 1D model systems

In this work, we will use two model 2-electron 1D systems
to test the basic idea of using exact conditions to improve
machine-learned density functionals.

The first may be denoted the 1D Hooke’s atom. The
regular (3D) Hooke’s atom is two electrons in a harmonic
well, but repelling each other with a Coulomb repulsion.
This has analytic solutions for an infinite discrete set of force
constants, and has been a popular toy model for testing
DFT ideas. The same behavior is also seen in 1D, but
now the interaction is replaced by a delta repulsion (as the
Coulomb interaction is too singular in 1D, and the delta-
repulsion produces an electron-electron cusp that exactly
mimics that of 3D). Thus the Hamiltonian is

H = �1

2

✓
d
2

dx
2
1

+
d
2

dx
2
2

◆
+

1

2
!
2
(x

2
1 + x

2
2) + �� (x1 � x2) .

(13)

This Hamiltonian is seperable into a center of mass and
relative coordinate. The first is just a harmonic oscillator,
while the second can be solved numerically [29, 30]. As well
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FIG. 1. (color online) A model density is shown before (red)

and after scaling (blue) by a factor of � = 1/2.

as a model for electronic structure, these systems are also
important in cold-atom physics.
More recently, an entirely new 1D mimic of electronic

structure has been developed, with the principal aim being
to test ideas of strong correlation. These systems often con-
sists of chains of 1D H atoms which can be accurately and
e�ciently solved via density-matrix renormalization group
codes (DMRG) [31]. They are also designed so that stan-
dard density functional approximations, such as LDA, per-
form quantitatively similarly to those in 3D, yielding reason-
ably accurate equilibrium bond lengths and energies, but
also breaking spin symmetry at the Coulson-Fisher point
as a bond is stretched. For this model, we use a simple
exponential for both the attraction to the nuclei and the
repulsion among electrons:

v(x) = A exp (� |x|) , (14)

where A = 1.071295, 
�1

= 2.385345. Just as in 3D
reality, the the external potential for two ’proton’s separated
by a distance R is given by

vext(x) = �v(x � R/2) � v(x + R/2), (15)

and the interaction potential is given by

vint(x, x
0
) = v(x� x

0
), (16)

The parameters of the exponentials have been chosen to
best match the soft-Coulomb interaction potential, which
is typically used in 1D calculations, as it captures certain
behaviors of 3D systems [32]. We determine the densities by
solving the fully interacting problem on a grid using density
matrix renormalization group (DMRG)[31].

3. THEORY

We attempt to improve machine-learning of the kinetic
energy functional TS[n] of non-interacting electrons, by en-
forcing the exact condition:

TS[n� ] = �
2
TS[n], (17)
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Historical methods of functional development in density functional theory have been largely guided by
analytic conditions that constrain the exact functional one is trying to approximate. Recently, machine-
learned functionals have been created by interpolating the results from a small number of exactly solved
systems to unsolved systems that are similar in nature. For simple cases, using an exact condition,
we find improvements in the learning curves of machine-learned approximations. We also find that the
significance of the improvement depends on the nature of the interpolation manifold of the machine-
learned functional.

1. INTRODUCTION

Density functional theory (DFT) is a popular approach
to electronic structure calculations in both the material
sciences and chemistry [1, 2]. By approximating various
components of the energy of a quantum system with func-
tionals of the density, DFT bypasses the need to solve the
Schrödinger equation for the fully interacting problem. The
utility of DFT calculations are, in turn, critically dependent
upon the quality approximations to the energy of a system as
a functional of the density. Almost all modern calculations
employ the KS scheme [3], in which only the exchange-
correlation energy need be approximated as a functional of
the spin-densities.
Within the arena of density functional approximation de-

velopment, there is tension between the desire to derive ap-
proximations from general principles of quantum mechanics
(e.g., PBE [4]) versus fitting to known molecular and ma-
terials data (e.g., Minnesota functionals [5]). Functionals
derived from general principles tend to work well for pre-
dicting most properties of most systems [4, 6, 7], where as
functionals that are entirely or partially fit to empirical sys-
tems tend to perform better for properties for those specific
systems or similar ones [8].
Recently, an entirely new type of approximate functional

has been developed, using algorithms from the general area
of machine learning [9, 10]. Machine-learned density func-
tionals are empirical functionals that work by extrapolating
the exact values of the functional on a handful of densities
(training set) to predict the value of the functional on new
densities (test set). We emphasize that this empiricism is
very di↵erent from that previously used in DFT. In ML, the
functional is approximated in an intrinsically non-local fash-
ion, requiring many parameters (up to one million) [9], but
producing approximations with chemical accuracy on the
interpolation manifold, including especially process which
standard semilocal functionals fail at, such as stretched
bonds. Thus an ML non-interacting kinetic energy remains
accurate as a bond breaks [11] (unlike semilocal counter-
parts) while an ML XC energy can include strong correlation,
even in the thermodynamic limit [10]. (Besides finding den-
sity functionals, machine learning is more commonly used in

chemical and material science to make accurate predictions
of chemical and physical properties. [12–21])
This kind of DFT development raises a natural ques-

tion: are exact conditions, which are often built in to
human-based functionals, useful in the design of machine-
learning approximations? By manually imposing exact con-
ditions on machine-learned density functionals, one intro-
duces prior knowledge to the machine-learned functionals
that may foreseeably enable easier training. Among the
simplest, and most powerful, exact conditions in KS DFT
are those produced by coordinate scaling. Thus, the ex-
change energy functional scales in a simple way when the
density is squeezed or stetched:

EX[n� ] = � EX[n], n�(r) = �
3
n(�r) (1)

where � is a positive real number. All popular exchange
functionals satisfy this condition, and it determines the local
density approximation up to a constant [22].
So far, ML functionals have been designed without the

use of such conditions, in order to test principles and limita-
tions of ML construction of functionals in their most prim-
itive form. We can now phrase our question very precisely.
If we can impose a condition like Eq. (1) on an ML func-
tional, i.e., construct the functional so that the condition is
automatically satisfied, do we get a more accurate approxi-
mation for a given amount of data? We shall see that the
answer is typically yes, but whether that gain in accuracy is
signficant depends on the nature of interpolation manifold.
This papers is organized as follows. Sec 2 reviews the

formalism of Kohn Sham DFT and Machine learning. In this
section, we also discuss recent progress in applying machine
learning to DFT and standard systems which have been
used as a test of novel ideas in DFT. In Sec 3, we explain
in detail the methods used to generate reference densities
needed to use our ML formalism. In Sec 4, we present
results attained by applying machine learning algorithms to
these densities and compare the performance of a traditional
machine learned functional to one that satisfies an exact
scaling condition by construction. In Sec 5, we interpret our
results and o↵er an explaination in terms of a pair of simple
model systems. In Sec 6, we explain how these results may
improve the applicability of machine learned functionals and
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FIG. 2. (color online) The learning curves for functionals

trained on scaled (blue) and unscaled (red) densities for the

1D Hooke’s atom. Accuracy of 1 mH is denoted by the dashed

line (black).
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FIG. 3. (color online) Same as Fig. 2, but for H2 densities.

Fig. 4 shows the densities of the 1D Hooke’s atom in
our set, both before and after scaling. It is apparent that
the densities become much more similar once they have
been scaled. The appearance of the double peak is a strong
correlation e↵ect, in which the two electrons are trying to
avoid one another. But the decay of the scaled density at
large |x| is the same for all cases. To reinforce this, we plot
l as a function of ! for each density, and TS (both with
and without scaling) as a function of !. Clearly the scaled
functional varies less and is easier to learn.
To quantify this, we plot in Fig. 5 the value of � for

each !, versus 1/
p
2!. The curve is close to a constant

(as it would be for the non-interacting case) and only varies
strongly from that as ! becomes small and the system be-
comes more strongly correlated. Lastly, in Fig. 6, we plot
both the unscaled and scaled KS kinetic energies for the 1D
Hooke’s atom. If the density were not changing shape, i.e.,
truly non-interacting, the unscaled energy would be linear,
and the scaled kinetic energy would be constant, as in our
toy example.
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FIG. 4. (color online) The Hooke’s atom densities with di↵er-

ent ! are plotted before scaling (top) and after scaling (bot-

tom). The color of each line indicates the value of !. Notably,

the densities appear “more similar” to each other after scal-

ing.
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FIG. 5. We plot �, defined in Eqn. (26), as a function of !

for the Hooke’s atom.

Now let us examine the same sequence of plots for the
1D H2 molecule as a function of R. Fig. 7 shows the
densities (both unscaled and scaled) for the sequence of
H2 densities, as a function of R. Now the reverse appears
true: The unscaled densities appear to change less (or no
more than) the scaled densities. As R increases, the scaled
densities change considerably. Moreover, even when the
densities are essentially indistinguishable from the sum of
atomic densities, the scaled density continues to shrink in
extent around the two centers as R increases, i.e., the scaled
densities continue to change with R, even when R is very
large.
Of course, appearances are not definitive proof, so we
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Summary

• ML functionals can 
– find accurate densities
– break bonds
– Do the full functional for strongly correlated solids (in 1D)
– Can now do MD of small molecules in 3D
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