
Ti
m
e

release
branches masterdevelop hotfixes

feature
branches

Feature
for future

release

Tag

1.0

Major
feature for

next release

From this point on,
“next release”

means the release
after 1.0

Severe bug
fixed for

production:
hotfix 0.2

Bugfixes from
rel. branch

may be
continuously
merged back
into develop

Tag

0.1

Tag

0.2

Incorporate
bugfix in
develop

Only
bugfixes!

Start of
release

branch for
1.0

Author: Vincent Driessen
Original blog post: http://nvie.com/posts/a-succesful-git-branching-model

License: Creative Commons BY-SA

The git-flow model

Giovanni Pizzi

Theory and Simulation of Materials, EPFL Lausanne

The	git-flow	model

• https://nvie.com/posts/a-successful-git-branching-model/  
(and rediscussed elsewhere, e.g. https://datasift.github.io/gitflow/
IntroducingGitFlow.html)

• Extensions. e.g.: http://tleyden.github.io/blog/2014/04/09/a-successful-
git-branching-model-with-enterprise-support/

• Based on 
fork/ 
pull request 
model

https://nvie.com/posts/a-successful-git-branching-model/
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://datasift.github.io/gitflow/IntroducingGitFlow.html
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/

Main	branches

• master: last stable production release

• develop: latest delivered development
changes for the next release

• Making a commit to master means
making a new release

• On top, tag versions with vX.Y.Z, using
semantic versioning

Support	branches

• May branch off from: develop

• Must merge back into: develop

• Branch naming convention:

• anything except master, develop,
release-*, or hotfix-*

• In AiiDA: we (try to) use the syntax  
fix-<ISSUE_NUM>-SOME-NAME

• develop new features for the upcoming or
a distant future release.

• The target release in which this feature will
be incorporated may well be unknown at
branching-off time

• Think well on how to deal with too long/
complex/code-breaking features

How	to	merge	back

• Distinguish between git features
(commits, merge commits) and GitHub
features (issues, pull requests)

• Note the difference between merge,
merge --no-ff, rebase, squash, …

• If possible:

• Favour cleanliness of your history in
git and of the content of the git
metadata

• Squash/rebase useless commits

• Think if you want to keep a branch
in the history or not

• Git-flow suggestion: use --no-ff (or, what
we do: squash in a single commit if
appropriate)

Hotfix	branches

• Create a hot fix branch to fix
something the latest release,
without adding the new features
in develop

• Then merge it back into master
(to make a release) and into
develop (to have the features in
the most recent development
branch)

The	(original	git-flow	model)

Ti
m
e

release
branches masterdevelop hotfixes

feature
branches

Feature
for future

release

Tag

1.0

Major
feature for

next release

From this point on,
“next release”

means the release
after 1.0

Severe bug
fixed for

production:
hotfix 0.2

Bugfixes from
rel. branch

may be
continuously
merged back
into develop

Tag

0.1

Tag

0.2

Incorporate
bugfix in
develop

Only
bugfixes!

Start of
release

branch for
1.0

Author: Vincent Driessen
Original blog post: http://nvie.com/posts/a-succesful-git-branching-model

License: Creative Commons BY-SA

Extension	to	support	multiple	support	branches	(for	older	releases)

• From http://tleyden.github.io/blog/
2014/04/09/a-successful-git-
branching-model-with-enterprise-
support/; note that they call differently
develop/master as master/stable…

• Keep a ‘support/x.y.z’ branch open,
branched off the relevant release tag
commit, and make tags out of it.

• “Cherry-pick” from develop or apply
fixes directly as in a new branch. Do
NOT merge back into develop

• It makes sense for “old” releases, where
the codebase changed significantly
(and you want to support older
releases for bugfixes)

http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/

