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The	git-flow	model

• https://nvie.com/posts/a-successful-git-branching-model/  
(and rediscussed elsewhere, e.g. https://datasift.github.io/gitflow/
IntroducingGitFlow.html) 

• Extensions. e.g.: http://tleyden.github.io/blog/2014/04/09/a-successful-
git-branching-model-with-enterprise-support/ 

• Based on 
fork/ 
pull request 
model
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Main	branches

• master: last stable production release 

• develop: latest delivered development 
changes for the next release 

• Making a commit to master means 
making a new release 

• On top, tag versions with vX.Y.Z, using 
semantic versioning



Support	branches

• May branch off from: develop 

• Must merge back into: develop 

• Branch naming convention: 

• anything except master, develop, 
release-*, or hotfix-* 

• In AiiDA: we (try to) use the syntax  
fix-<ISSUE_NUM>-SOME-NAME 

• develop new features for the upcoming or 
a distant future release. 

• The target release in which this feature will 
be incorporated may well be unknown at 
branching-off time 

• Think well on how to deal with too long/
complex/code-breaking features



How	to	merge	back

• Distinguish between git features 
(commits, merge commits) and GitHub 
features (issues, pull requests) 

• Note the difference between merge, 
merge --no-ff, rebase, squash, … 

• If possible: 

• Favour cleanliness of your history in 
git and of the content of the git 
metadata 

• Squash/rebase useless commits 

• Think if you want to keep a branch 
in the history or not 

• Git-flow suggestion: use --no-ff (or, what 
we do: squash in a single commit if 
appropriate)



Hotfix	branches

• Create a hot fix branch to fix 
something the latest release, 
without adding the new features 
in develop 

• Then merge it back into master 
(to make a release) and into 
develop (to have the features in 
the most recent development 
branch)



The	(original	git-flow	model)
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Extension	to	support	multiple	support	branches	(for	older	releases)

• From http://tleyden.github.io/blog/
2014/04/09/a-successful-git-
branching-model-with-enterprise-
support/; note that they call differently 
develop/master as master/stable…  

• Keep a ‘support/x.y.z’ branch open, 
branched off the relevant release tag 
commit, and make tags out of it.  

• “Cherry-pick” from develop or apply 
fixes directly as in a new branch. Do 
NOT merge back into develop 

• It makes sense for “old” releases, where 
the codebase changed significantly 
(and you want to support older 
releases for bugfixes)
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