N NF

The git-flow model

Giovanni Pizzi

Theory and Simulation of Materials, EPFL Lausanne

MARVEL DRIVING
O@® of | M4X THE EXASCALE
TRANSITION

[

PrL



The git-flow model

« https://nvie.com/posts/a-successful-git-branching-model/
(and rediscussed elsewhere, e.g. https://datasift.github.io/gitflow/
IntroducingGitFlow.html)

« Extensions. e.q.: http://tleyden.github.io/blog/2014/04/09/a-successful-

it-branching-model-with-enterprise-support

« Basedon
fork/
pull request
model

I
T
"1

mﬂﬂ MARVEL umvw;a
h 4 ‘I THE EXASCALE
O@® e mmsmom/



https://nvie.com/posts/a-successful-git-branching-model/
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://datasift.github.io/gitflow/IntroducingGitFlow.html
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/

Main branches

develop master

« master: last stable production release é
)

Initial

production
version

« develop: latest delivered development
changes for the next release

« Making a commit to master means
making a new release

) production
release

\ 5 ' M-Next

production
release

« On top, tag versions with vX.Y.Z, using
semantic versioning

Work in
progress on
“next release”

OO0 0000

_— MARVEL DRIVING — [
“-N ¥ THE EXASCALE
ENSNE O00e® 'R‘AI\.SITIi)N = P ' L




Support branches

May branch off from: develop

feature

Must merge back into: develop develop

branches

Branch naming convention:

« anything except master, develop,
release-*, or hotfix-*

« In AiiDA: we (try to) use the syntax
fix-<ISSUE_ NUM>-SOME-NAME /

develop new features for the upcoming or
a distant future release.

The target release in which this feature will O
be incorporated may well be unknown at
\‘bL

branching-off time

Think well on how to deal with too long/
complex/code-breaking features

) MARVEL DRIVING = ==
THE EXASCALE
m Co0e TRANSITION : I l- L




How to merge back

« Distinguish between git features
(commits, merge commits) and GitHub o
features (issues, pull requests) branches

develop develop

« Note the difference between merge,
merge --no-ff, rebase, squash, ...

« If possible:
« Favour cleanliness of your history in /
git and of the content of the git )
metadata

feature feature

« Squash/rebase useless commits

« Think if you want to keep a branch \)é Q
in the history or not

« Git-flow suggestion: use --no-ff (or, what
we do: squash in a single commit if
appropriate)

git merge --no-ff git merge
(plain)

— MARVEL DRIVING - -
5 THE EXASCALE — P _—
FN m OCo0e 'R‘AI\.SITIi)F‘J L H L




Hotfix branches

develop hotfixes master

« Create a hot fix branch to fix
something the latest release,

without adding the new features &‘<; ' ﬂ{fi l
in develop (”/

« Then merge it back into master
(to make a release) and into
develop (to have the features in
the most recent development t
branch) .\v .

fixed for
production:
hotfix 1.2.1

———

O Q0«00«00

Y MARVEL DRIVING - =
NS !ili THE EXASCALE
EN O00e® 'R‘AI\.SITIi)r‘J : I l- L




The (original git-flow model)

ENR NF

release
develop branches hotfixes

feature

branches master

Time

Major
feature for
next release

Severe bug
fixed for
production:
hotfix 0.2

Incorporate
bugfixin
develop J
\c Tag
0.2

Feature
for future
release

AN

Start of
release
branch for
From this point on,
“next release”
means the release
after1.0

Bugfixes from
rel. branch
may be
continuously
merged back
into develop

\ v )
Tag

1.0

Author: Vincent Driessen

Original blog post: http:/nvie.c cesful-git-branching-model
License: Creative Commons BY-SA

MARVEL DRIVING

O O O ' THE EXASCALE

TRANSITION

m
"



Extension to support multiple support branches (for older releases)

From http://tleyden.github.io/blog/
2014/04/09/a-successful-git-

branching-model-with-enterprise-
support/; note that they call differently

develop/master as master/stable...

Keep a‘support/x.y.z' branch open,
branched off the relevant release tag
commit, and make tags out of it.

“Cherry-pick” from develop or apply
fixes directly as in a new branch. Do
NOT merge back into develop

It makes sense for “old” releases, where
the codebase changed significantly
(and you want to support older
releases for bugfixes)

MARVEL
Co0®

a8 O (5] i = (5]

support
branches

feature
branches

minor
release
candidate
branches

release
candidate
branches

master stable

rc/1.0.0

mrc/t .ol/C) 1.0.0

e

feature/
udp

DRIVING
WX THE EXASCALE
TRANSITION



http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/
http://tleyden.github.io/blog/2014/04/09/a-successful-git-branching-model-with-enterprise-support/

