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OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction » Loop over some input parameters
def run_eos_wf(code, pseudo_family, element)
“““Run an equation of state of a bulk crystal structure for the given element."""

# Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

# Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()
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» Loop over some input parameters
» Launch a calculation for each iteration
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OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction » Loop over some input parameters
def run_eos_wf(code, pseudo_family, element):
“““Run an equation of state of a bulk crystal structure for the given element."""

» Launch a calculation for each iteration
» Use the results of the calculation ...
# Loop over the label and scale factor pairs

for label, factor in list(zip(labels, scale_factors)): + Callitaday!

# Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()
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OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction
def run_eos_wf(code, pseudo_family, element)

“"“Run an equation of state of a bulk crystal structure for the given element."""

# Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

# Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()

1

Loop over some input parameters
Launch a calculation for each iteration
Use the results of the calculation ...
Callit aday!

CONTAINS ONE GLARING MISTAKE IN REASONING
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OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction
def run_eos_wf(code, pseudo_family, element)

“"“Run an equation of state of a bulk crystal structure for the given element."""

# Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

# Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()
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Loop over some input parameters
Launch a calculation for each iteration
Use the results of the calculation ...
Callit aday!

CONTAINS ONE GLARING MISTAKE IN REASONING

ASSUMES THAT CALCULATIONS NEVER FAIL
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OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction
def run_eos_wf(code, pseudo_family, element)
“"Run an equation of state of a bulk crystal structure for the given element."""

# Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

# Launch a "PwCalculation” for each scaled structure
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Loop over some input parameters
Launch a calculation for each iteration
Use the results of the calculation ...
Callitaday!

AKE IN REASONING
TIONS NEVER FAIL
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WHEN LIFE GIVES YOU LEMONS

INITIALIZATION

7

CALCULATION
SUCCESSFUL?

ATTACH OUTPUTS
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PREPARE INPUTS

[

RUN CALCULATION

!

HANDLE ERRORS
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PREPARE INPUTS

[

RUN CALCULATION

!

HANDLE ERRORS

class PwBaseWorkChain(BaseRestartWorkChain):

"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):
super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(
cls.setup,
while_(cls.should_run_calculation)(
cls.prepare_calculation,
cls.run_calculation,
cls. inspect_calculation,

)
cls.results,

)

spec.output (' output_parameters’, valid_type=orm.Dict)
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class PwBaseWorkChain(BaseRestartWorkChain):
"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):
super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(
cls.setup,
while_(cls.should_run_calculation)(
cls.prepare_calculation,
cls.run_calculation,
cls. inspect_calculation,

)
cls.results,

)

spec.output (' output_parameters’, valid_type=orm.Dict)

» How would you implement inspect_calculation?
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class PwBaseWorkChain(BaseRestartWorkChain):
"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):
super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(
cls.setup,
while_(cls.should_run_calculation)(
cls.prepare_calculation,
cls.run_calculation,
cls. inspect_calculation,

)
cls.results,

)
sps.}c‘output( ‘output_parameters', valid_type=orm.Dict)
» How would you implement inspect_calculation?

» How can it handle errors before the next calculation?
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class PwBaseWorkChain(BaseRestartWorkChain):
"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):
super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(
cls.setup,
while_(cls.should_run_calculation)(
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cls.run_calculation,
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)
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)
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» How would you implement inspect_calculation?
» How can it handle errors before the next calculation?

» One work group will focus on error handling in work chains
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class PwBaseWorkChain(BaseRestartWorkChain):
"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):

super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(

cls.setup,

while_(cls.should_run_calculation)(
cls.prepare_calculation,
cls.run_calculation,
cls. inspect_calculation,

)

cls.results,

)

sps.}c‘output( ‘output_parameters', valid_type=orm.Dict)
How would you implement inspect_calculation?
How can it handle errors before the next calculation?
One work group will focus on error handling in work chains

After you have implemented your own idea, compare with
aiida-quantumespresso

30of 29




MODULARITY ISKING

The most important part of work chains is: modularity
» Tackle a well-defined problem

» Create generic reusable components
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The most important part of work chains is: modularity
» Tackle a well-defined problem

» Create generic reusable components

Example: compute the electronic band structure
Band structure
— Relax
PwCalculation
PwCalculation
— SCF
I—PwCaIcuIation
—Bands
I—PwCaIcuIation
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MODULARITY ISKING

PwBaseWorkChain

class PwBaseWorkChain(BaseRestartWorkChain):

The most important part of work chains is: modularity

° Tackle a WeII—deﬁned pr0b|em "uorkchain to run a Quantum ESPRESSO pw.x calculation with automated error hamdling"""
@classmethod
. def define(cls, spec):
» Create generic reusable components super (PwBaseworkChain, cls).define(spec)

spec.input(’code’, valid_ type=orm.Code)
spec.input('structure’, valid_type=orm.StructureData)
spec.input('kpoints', valid type=orm.KpointsData, required=False)

Example: compute the electronic band structure spec.input('kpoints_distance', valid_type=orm.Float, required=False)

spec.input('kpoints_force parity’, valid_type=orm.Bool, required=False)
spec.input(‘parameters’, valid_type=orm.Dict)

B a n d stru ctu re spec.input_namespace('pseudos', required=False, dynamic=True)

Spec.input(*pseudo_family’, valid_type=orm.Str, required=False)

spec.input(*parent_folder’, valid_type=orm.RemoteData, required=False)
f— Relax spec.input('vow_table', valid_type=orm.SinglefileData, required-False)

spec.input(’settings', valid_type=orm.Dict, required=False)

PwBaseWorkChain PP MR AT CoSERL S PR, TRy
PwBaseWorkChain
— SCF
L PwBaseWorkChain
— Bands

I—PwBaseWorkChain
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MODULARITY ISKING

The most important part of work chains is: modularity

» Tackle a well-defined problem

» Create generic reusable components

Example: compute the electronic band structure
Band structure
—Relax
PwBaseWorkChain
PwBaseWorkChain
— SCF
I—PwBaseWorkChain
— Bands
I—PwBaseWorkChain

PwBaseWorkChain

class PwBaseWorkChain(BaseRestartWorkChain):
"nviorkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

@classmethod
def define(cls, spec):
super (PwBaselorkChain, cls).define(spec)

spec
spec.
spec
spec
spec.
spec
spec
spec
spec.
spec
spec
spec
spec

input('code’, valid_ type=orm.Code)
input('structure’, valid_type=orm.StructureData)
input('kpoints', valid_type=orm.KpointsData, required|

alse)

.input('kpoints_distance', valid_typeorm.Float, required=False)

input(’kpoints_force parity’, valid_type=orm.Bool, required=False)
1input(*parameters’, valid_type=orm.Dict)

.input_namespace('pseudos’, required-False, dynamic=True)

input (' pseudo_family’, valid_type=orm.Str, required=False)
input('parent_folder’, valid_type=orm.RemoteData, required=False)
input('vchw_table', valid_type=orm.SinglefileData, required=False)
input('settings’, valid_type=orm.Dict, required=False)
input('options’, valid_type=orm.Dict, required=False)

1input ('automatic_parallelization', valid_typesorm.Dict, required=False)

PwRelaxWorkChain

class PwRelaxWorkChain(WorkChain)
“"“"Workchain to relax a structure wsing Quantum ESPRESSO pw.x"""

@classmethod
def define(cls, spec)
super (PwRelaxWorkchain, cls).define(spec)

spec.
spec
spec.
spec
spec.
spec.
spec

expose_inputs(PwBaseWorkChain, namespace='base’, exclude=('structure’,))
input (' structure’, valid_type=orm.StructureData)

input('final scf', valid_type=orm.Bool, default=orm.Bool(False))

input (' relaxation_scheme', valid_type=orm.Str, default=orm.Str('vc-relax'))
1input('meta_convergence', valid_type=orm.Bool, default=orm.Bool(True))
input('max_meta_convergence iterations', valid_type=orm.Int, default=orm.Int(5))
input ('volume_convergence', valid_type=orm.Float, default=orm.Float(8.01))
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MODULARITY ISKING

The most important part of work chains is: modularity

» Tackle a well-defined problem

» Create generic reusable components

Example: compute the electronic band structure
Band structure
—Relax
PwBaseWorkChain
PwBaseWorkChain
— SCF
I—PwBaseWorkChain
— Bands
I—PwBaseWorkChain
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PwBaseWorkChain

class PwBaseWorkChain(BaseRestartWorkChain):
"nviorkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

@classmethod
def define(cls, spec):
super (PwBaselorkChain, cls).define(spec)

spec
spec
spec

spec.
spec.

spec
spec
spec

spec.

spec
spec
spec
spec

input('code’, valid_ type=orm.Code)

.input("structure’, valid_type=orm.StructureData)

input(’kpoints', valid type=orn.KpointsData, required=False)
input('kpoints_distance', valid_type=orm.Float, required-False)
input(’kpoints_force parity’, valid_type=orm.Bool, required=False)
1input(*parameters’, valid_type=orm.Dict)

.input_namespace('pseudos’, required-False, dynamic=True)

input (' pseudo_family’, valid_type=orm.Str, required=False)
input('parent_folder’, valid_type=orm.RemoteData, required=False)
input('vchw_table', valid_type=orm.SinglefileData, required=False)
input('settings', valid_type=orm.Dict, required=False)
input('options’, valid_type=orm.Dict, required=False)

1input ('automatic_parallelization', valid_typesorm.Dict, required=False)

PwBandsWorkChain

class PwBandsWorkChain(WorkChain)
“"“Workchain to compute a band structure for a given structure using Quantum ESPRESSO pw.x"""

@classmethod
def define(cls, spec):
super (PwBandsiWorkchain, cls).define(spec)

spec.

spec

spec.
.input('structure’, valid_type=orm.StructureData)
.input(*nbands_factor', valid_type=orm.Float, default=orm.Float(1.2))

spec
spec

expose_inputs(PwRelaxWorkChain, namespace='relax', exclude=('structure’,))
expose_inputs(PwBaseWorkChain, namespace='sct', exclude=('structure’,))
expose_inputs(PwBaseWorkChain, namespace='bands', exclude=('structure’,))
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NESTED WORK CHAINS

What do the inputs look like of a nested work chain?

inputs = {
"structure’: structure,
‘relax': {
*hase': {
‘code’: code,
‘pseudo_family': pseudo_family,
"kpoints_distance': Float(d.5),

‘parameters': parameters,

1
*meta_convergence': Bool(False),

}
"sef': {
*code': code,
*pseudo_fanily': pseudo_family,
*kpoints_distance': Float(0.2),
*parameters’: parameters,

*bands': {
*code': code,
*pseudo_fanily': pseudo_family,
*kpoints_distance': Float(0.15),
*parameters’: parameters,

¥

1
**inputs)

submit (PwBandshorkChain,

50f 29
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NESTED WORK CHAINS

What do the inputs look like of a nested work chain?

inputs = {
"structure’: structure,
‘relax': {
*hase': {

‘code’: code,
‘pseudo_family': pseudo_family,
"kpoints_distance': Float(d.5),
‘parameters': parameters,

1
*meta_convergence': Bool(False),

}

"sef': {
*code': code,
*pseudo_fanily': pseudo_family,
*kpoints_distance': Float(0.2),
*parameters’: parameters,

*bands': {
*code': code,
*pseudo_fanily': pseudo_family,
*kpoints_distance': Float(0.15),
*parameters’: parameters,

}

submit (PnBandshorkChain, **inputs)

And how do we submit a sub process in a work chain?

def run_relax(self):

"""Run the PwRelaxWorkChain to run a relax Pwalculation.”"”
inputs = AttributeDict(self.exposed_inputs(PwRelaxWorkChain, namespace='relax'))
inputs.structure = self.ctx.current_structure

running = self.submit(PwRelaxWorkChain, **inputs)

self.report('launching PwRelaxWorkChain<{}>'.format(running.pk))

return ToContext (workehain_relax=running)

¢5AIDA
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CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).
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We now have:

A nice Python interface to your code (if not in Python already).
Data provenance.

Possibilities to do error handling and automatic restarts.
But to be truly useful in science, we need more:

Increase of productivity.

More rigid way of performing computations, data analysis with less possibilities of shortcuts.

More time to analyze, interpret and design new studies.

New novel ways to traverse domains (in material science, enable multi-scale).
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CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).
- Data provenance.

- Possibilities to do error handling and automatic restarts.
But to be truly useful in science, we need more:

- Increase of productivity.

- More rigid way of performing computations, data analysis with less possibilities of shortcuts.
- More time to analyze, interpret and design new studies.

- New novel ways to traverse domains (in material science, enable multi-scale).

- Possibilities of utilizing different codes for different purposes, interchangeably.

- If possible, make the work to be performed independent of the code.
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DAILY LIFE OF A COMPUTATIONAL SCIENTIST
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DAILY LIFE OF A COMPUTATIONAL SCIENTIST

calculation calculation calculation
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DAILY LIFE OF A COMPUTATIONAL SCIENTIST

sample

pool

! ! !
TR
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DAILY LIFE OF A COMPUTATIONAL SCIENTIST

calculation

calculation

calculation

result
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DAILY LIFE OF A COMPUTATIONAL SCIENTIST

an example
s Sample
pool

! ! !

calculation calculation calculation

calculation calculation calculation

calculation calculation calculation

oocAiiDA 150f 29




AN EXAMPLE - MATERIAL SCIENCE - VASP

? - We start with a structure (can of course have been generate by
some other workflow).

restart

converge

result
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? - We start with a structure (can of course have been generate by
some other workflow).

restart - The restart workchain (currently independent of code).

- The VASP workchain. Handles the setup of the VASP calculation
(make sure inputs etc. are passed correctly to the VASP
calculation plugin). Should also auto-parallelize.

- The verify workchain. Handles the check of physical principles

outside of VASP.
converge - The relaxation workchain. Handles relaxations of the structure.
- The convergence workchain. Determines convergence
parameters (typically the plane wave cutoff and k-point grid).
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AN EXAMPLE - MATERIAL SCIENCE - VASP

- We start with a structure (can of course have been generate by

some other workflow).
restart - The restart workchain (currently independent of code).
vasp » The VASP workchain. Handles the setup of the VASP calculation
. (make sure inputs etc. are passed correctly to the VASP
verify calculation plugin). Should also auto-parallelize/run-time opt.
relax - The verify workchain. Handles the check of physical principles
outside of VASP.

converge

- The relaxation workchain. Handles relaxations of the structure.

- The convergence workchain. Determines convergence
result parameters (typically the plane wave cutoff and k-point grid).
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AN EXAMPLE - MATERIAL SCIENCE - VASP

- We start with a structure (can of course have been generate by

some other workflow).
restart - The restart workchain (currently independent of code).
vasp » The VASP workchain. Handles the setup of the VASP calculation
. (make sure inputs etc. are passed correctly to the VASP
verify calculation plugin). Should also auto-parallelize/run-time opt.
relax - The verify workchain. Handles the check of physical principles
outside of VASP.

converge

- The relaxation workchain. Handles relaxations of the structure.

- The convergence workchain. Determines convergence
result parameters (typically the plane wave cutoff and k-point grid).
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- The material scientist should not need to worry about these
restart things.

vasp

verify

relax

converge
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verify knowledge and input/output analysis. Today, knowledge of this is
regarded as highly valuable competence.
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AN EXAMPLE - MATERIAL SCIENCE - VASP

- The material scientist should not need to worry about these
restart things.

« Mostly numerics.

Probably a lot of error correction, restarts etc. based on
verify knowledge and input/output analysis. Today, knowledge of this is
regarded as highly valuable competence.

- Minimal base workchain set for calculations with no prior
knowledge.

Should in principle be independent of code and, in fact also the
technique used.

vasp

relax

converge

result
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- Refactor code.
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the science

Refactor code.

Refactor science (lean
science).

Try to make the scientific
workchains reusable,
preferable independent of
code.

Plugin developers should
unite and try to merge the
codes within one class.
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AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

- Convergence tests should always be done (how many are actually
doing this regularly?). For plane wave DFT codes, this typically

covers the plane wave cutoff and k-point sampling.
restart

converge

result
So let us have a look at a bit more complex workchain outline.
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- Should be able to perform convergence tests on the relevant
parameters (of course not always possible due to limited
resources).

- Should not harden the result more than necessary (waste
computational resources, bad for the environment).
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AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

- Convergence tests should always be done (how many are actually
doing this regularly?). For plane wave DFT codes, this typically
covers the plane wave cutoff and k-point sampling.

- Should be able to perform convergence tests on the relevant
parameters (of course not always possible due to limited
resources).

- Should not harden the result more than necessary (waste
computational resources, bad for the environment).

- Necessary to also test relative convergence, e.g. say:

restart

converge

AEg =E) — E}

result
So let us have a look at a bit more complex workchain outline.
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!

restart

converge

result

¢5AIDA

spec.outline (
cls.initialize,
if_(cls.run_conv_calcs) (
while_(cls.run_pw_conv_calcs) (

)y

cls
cls
cls
cls

.init_pw_conv_calc,
.init_next_workchain,
.run_next_workchain,
.results_pw_conv_calc

cls.analyze_pw_conv,

while_ (cls.run_kpoints_conv_calcs) (
.init_kpoints_conv_calc,
.init_next_workchain,
.run_next_workchain,
.results_kpoints_conv_calc

cls
cls
cls
cls
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spec.outline (
cls.initialize,
if_(cls.run_conv_calcs) (
while_(cls.run_pw_conv_calcs) (

)y

cls
cls
cls
cls

.init_pw_conv_calc,
.init_next_workchain,
.run_next_workchain,
.results_pw_conv_calc

cls.analyze_pw_conv,

while_ (cls.run_kpoints_conv_calcs) (
.init_kpoints_conv_calc,
.init_next_workchain,
.run_next_workchain,
.results_kpoints_conv_calc

cls
cls
cls
cls
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!

restart

converge

result

¢5AIDA

cls.init_disp_conv,

while_(cls.run_pw_conv_disp_calcs) (
cls.
cls.
.run_next_workchain,
cls.

cls

)
if_ (cls
cls

) s

while_(cls.run_kpoints_conv_disp_calcs) (
cls.
cls.
cls.

cls

init_pw_conv_calc,
init_next_workchain,

results_pw_conv_calc

.analyze_pw_after_disp) (
.analyze_pw_conv,

init_kpoints_conv_calc,
init_next_workchain,
run_next_workchain,

.results_kpoints_conv_calc
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cls.init_comp_conv,

while_(cls.run_pw_conv_comp_calcs) (
cls.init_pw_conv_calc,
cls.init_next_workchain,
cls.run_next_workchain,

restart cls.results_pw_conv_calc

)

if_(cls.analyze_pw_after_comp) (
cls.analyze_pw_conv,

)

while_(cls.run_kpoints_conv_comp_calcs) (
cls.init_kpoints_conv_calc,

converge cls.init_next_workchain,

cls.run_next_workchain,

cls.results_kpoints_conv_calc
result ),

cls.analyze_conv,
cls.store_conv,
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!

restart

converge

result

¢5AIDA

cls
cls
cls
cls
cls

.init_converged,
.init_next_workchain,
.run_next_workchain,
.verify_next_workchain,
.results,

cls.

finalize
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!

restart

converge

result

¢5AIDA

- The workchain specifications
spec.input
spec.output

can potentially yield a lot of boiler plate code that is hard to
maintain for nested workchains.

AiiDA to the rescue

spec.expose_inputs
spec.export_outputs

For instance if we want to define the same outputs in the converge
workchain as defined in the relax workchain we do

spec.export_outputs (relax)
in the define section of the converge workchain.

Can also exclude certain input/output in case that is for instance
modified in that particular workchain. Check the manual.
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