Writing workflows in AiiDA

Workflows for the real-world

Sebastiaan Huber and Espen Flage-Larsen

AiiDA Workflow Tutorial May 22" 2019

9

sAIIDA

o

OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction » Loop over some input parameters
def run_eos_wf(code, pseudo_family, element)
“““Run an equation of state of a bulk crystal structure for the given element."""

Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()

S5 AIIDA

OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction
def run_eos_wf(code, pseudo_family, element)
“"Run an equation of state of a bulk crystal structure for the given element."""

Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()

¢5AilIDA

» Loop over some input parameters
» Launch a calculation for each iteration

20f29

OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction _ » Loop over some input parameters
def run_eos_wf(code, pseudo_family, element)
“““Run an equation of state of a bulk crystal structure for the given element.""" ° Launch a Ca|Cu|ati0n fOF each iteration

» Use the results of the calculation ...

Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()

oﬁoAiiDA 20f29

OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction » Loop over some input parameters
def run_eos_wf(code, pseudo_family, element):
“““Run an equation of state of a bulk crystal structure for the given element."""

» Launch a calculation for each iteration
» Use the results of the calculation ...
Loop over the label and scale factor pairs

for label, factor in list(zip(labels, scale_factors)): + Callitaday!

Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()

1

oﬁoAiiDA 20f29

OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction
def run_eos_wf(code, pseudo_family, element)

“"“Run an equation of state of a bulk crystal structure for the given element."""

Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()

1

Loop over some input parameters
Launch a calculation for each iteration
Use the results of the calculation ...
Callit aday!

CONTAINS ONE GLARING MISTAKE IN REASONING

¢5AIIDA

20f29

OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction
def run_eos_wf(code, pseudo_family, element)

“"“Run an equation of state of a bulk crystal structure for the given element."""

Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()

1

Loop over some input parameters
Launch a calculation for each iteration
Use the results of the calculation ...
Callit aday!

CONTAINS ONE GLARING MISTAKE IN REASONING

ASSUMES THAT CALCULATIONS NEVER FAIL

¢5AIIDA

20f29

OUR WORKFLOWS SO FAR

Consider the typical workflow structure so far...

@workfunction
def run_eos_wf(code, pseudo_family, element)
“"Run an equation of state of a bulk crystal structure for the given element."""

Loop over the label and scale factor pairs
for label, factor in list(zip(labels, scale_factors))

Launch a "PwCalculation” for each scaled structure
calculations[label] = run(PwCalculation, **inputs)

inputs =
label: result['output_parameters']
for label, result in calculations.items()

1

CONTAINS ONE GLA

ASSUMES THAT CA

¢5AIIDA

Loop over some input parameters
Launch a calculation for each iteration
Use the results of the calculation ...
Callitaday!

AKE IN REASONING
TIONS NEVER FAIL

20f29

WHEN LIFE GIVES YOU LEMONS

INITIALIZATION

7

CALCULATION
SUCCESSFUL?

ATTACH OUTPUTS

¢5AIDA

PREPARE INPUTS

[

RUN CALCULATION

!

HANDLE ERRORS

30f 29

WHEN LIFE GIVES YOU LEMONS

INITIALIZATION

v

CALCULATION
SUCCESSFUL?

ATTACH OUTPUTS

NO

¢5AIDA

PREPARE INPUTS

[

RUN CALCULATION

!

HANDLE ERRORS

class PwBaseWorkChain(BaseRestartWorkChain):

"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):
super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(
cls.setup,
while_(cls.should_run_calculation)(
cls.prepare_calculation,
cls.run_calculation,
cls. inspect_calculation,

)
cls.results,

)

spec.output (' output_parameters’, valid_type=orm.Dict)

30f 29

WHEN LIFE GIVES YOU LEMONS

INITIALIZATION

v

CALCULATION
SUCCESSFUL?

ATTACH OUTPUTS

NO

¢5AIDA

PREPARE INPUTS

[

RUN CALCULATION

!

HANDLE ERRORS

class PwBaseWorkChain(BaseRestartWorkChain):
"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):
super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(
cls.setup,
while_(cls.should_run_calculation)(
cls.prepare_calculation,
cls.run_calculation,
cls. inspect_calculation,

)
cls.results,

)

spec.output (' output_parameters’, valid_type=orm.Dict)

» How would you implement inspect_calculation?

30f 29

WHEN LIFE GIVES YOU LEMONS

INITIALIZATION

v

CALCULATION
SUCCESSFUL?

ATTACH OUTPUTS

NO

¢5AIDA

PREPARE INPUTS

[

RUN CALCULATION

!

HANDLE ERRORS

class PwBaseWorkChain(BaseRestartWorkChain):
"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):
super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(
cls.setup,
while_(cls.should_run_calculation)(
cls.prepare_calculation,
cls.run_calculation,
cls. inspect_calculation,

)
cls.results,

)
sps.}c‘output(‘output_parameters', valid_type=orm.Dict)
» How would you implement inspect_calculation?

» How can it handle errors before the next calculation?

30of 29

WHEN LIFE GIVES YOU LEMONS

INITIALIZATION

v

CALCULATION
SUCCESSFUL?

ATTACH OUTPUTS

N

¢5AIDA

PREPARE INPUTS

[

RUN CALCULATION

!

HANDLE ERRORS

class PwBaseWorkChain(BaseRestartWorkChain):
"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):
super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(
cls.setup,
while_(cls.should_run_calculation)(
cls.prepare_calculation,
cls.run_calculation,
cls. inspect_calculation,

)
cls.results,

)

sps.}c‘output(‘output_parameters', valid_type=orm.Dict)
» How would you implement inspect_calculation?
» How can it handle errors before the next calculation?

» One work group will focus on error handling in work chains

30of 29

WHEN LIFE GIVES YOU LEMONS

INITIALIZATION

v

CALCULATION
SUCCESSFUL?

ATTACH OUTPUTS

A

¢5AIDA

PREPARE INPUTS

y

RUN CALCULATION

!

HANDLE ERRORS

class PwBaseWorkChain(BaseRestartWorkChain):
"""warkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

felassmethod
def define(cls, spec):

super (PwBaseWorkChain, cls).define(spec)
spec. input('code’, valid_type=orm.Code)

spec.outline(

cls.setup,

while_(cls.should_run_calculation)(
cls.prepare_calculation,
cls.run_calculation,
cls. inspect_calculation,

)

cls.results,

)

sps.}c‘output(‘output_parameters', valid_type=orm.Dict)
How would you implement inspect_calculation?
How can it handle errors before the next calculation?
One work group will focus on error handling in work chains

After you have implemented your own idea, compare with
aiida-quantumespresso

30of 29

MODULARITY ISKING

The most important part of work chains is: modularity
» Tackle a well-defined problem

» Create generic reusable components

o°oAiiDA 40f29

MODULARITY ISKING

The most important part of work chains is: modularity
» Tackle a well-defined problem

» Create generic reusable components

Example: compute the electronic band structure
Band structure
— Relax
PwCalculation
PwCalculation
— SCF
I—PwCaIcuIation
—Bands
I—PwCaIcuIation

OOOA”DA 40f29

MODULARITY ISKING

The most important part of work chains is: modularity
» Tackle a well-defined problem

» Create generic reusable components

Example: compute the electronic band structure
Band structure
—Relax
PwBaseWorkChain
PwBaseWorkChain
— SCF
I—PwBaseWorkChain
— Bands
I—PwBaseWorkChain

OOOA”DA 40f29

MODULARITY ISKING

PwBaseWorkChain

class PwBaseWorkChain(BaseRestartWorkChain):

The most important part of work chains is: modularity

° Tackle a WeII—deﬁned pr0b|em "uorkchain to run a Quantum ESPRESSO pw.x calculation with automated error hamdling"""
@classmethod
. def define(cls, spec):
» Create generic reusable components super (PwBaseworkChain, cls).define(spec)

spec.input(’code’, valid_ type=orm.Code)
spec.input('structure’, valid_type=orm.StructureData)
spec.input('kpoints', valid type=orm.KpointsData, required=False)

Example: compute the electronic band structure spec.input('kpoints_distance', valid_type=orm.Float, required=False)

spec.input('kpoints_force parity’, valid_type=orm.Bool, required=False)
spec.input(‘parameters’, valid_type=orm.Dict)

B a n d stru ctu re spec.input_namespace('pseudos', required=False, dynamic=True)

Spec.input(*pseudo_family’, valid_type=orm.Str, required=False)

spec.input(*parent_folder’, valid_type=orm.RemoteData, required=False)
f— Relax spec.input('vow_table', valid_type=orm.SinglefileData, required-False)

spec.input(’settings', valid_type=orm.Dict, required=False)

PwBaseWorkChain PP MR AT CoSERL S PR, TRy
PwBaseWorkChain
— SCF
L PwBaseWorkChain
— Bands

I—PwBaseWorkChain

o°oAiiDA 40f29

MODULARITY ISKING

The most important part of work chains is: modularity

» Tackle a well-defined problem

» Create generic reusable components

Example: compute the electronic band structure
Band structure
—Relax
PwBaseWorkChain
PwBaseWorkChain
— SCF
I—PwBaseWorkChain
— Bands
I—PwBaseWorkChain

PwBaseWorkChain

class PwBaseWorkChain(BaseRestartWorkChain):
"nviorkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

@classmethod
def define(cls, spec):
super (PwBaselorkChain, cls).define(spec)

spec
spec.
spec
spec
spec.
spec
spec
spec
spec.
spec
spec
spec
spec

input('code’, valid_ type=orm.Code)
input('structure’, valid_type=orm.StructureData)
input('kpoints', valid_type=orm.KpointsData, required|

alse)

.input('kpoints_distance', valid_typeorm.Float, required=False)

input(’kpoints_force parity’, valid_type=orm.Bool, required=False)
1input(*parameters’, valid_type=orm.Dict)

.input_namespace('pseudos’, required-False, dynamic=True)

input (' pseudo_family’, valid_type=orm.Str, required=False)
input('parent_folder’, valid_type=orm.RemoteData, required=False)
input('vchw_table', valid_type=orm.SinglefileData, required=False)
input('settings’, valid_type=orm.Dict, required=False)
input('options’, valid_type=orm.Dict, required=False)

1input ('automatic_parallelization', valid_typesorm.Dict, required=False)

PwRelaxWorkChain

class PwRelaxWorkChain(WorkChain)
“"“"Workchain to relax a structure wsing Quantum ESPRESSO pw.x"""

@classmethod
def define(cls, spec)
super (PwRelaxWorkchain, cls).define(spec)

spec.
spec
spec.
spec
spec.
spec.
spec

expose_inputs(PwBaseWorkChain, namespace='base’, exclude=('structure’,))
input (' structure’, valid_type=orm.StructureData)

input('final scf', valid_type=orm.Bool, default=orm.Bool(False))

input (' relaxation_scheme', valid_type=orm.Str, default=orm.Str('vc-relax'))
1input('meta_convergence', valid_type=orm.Bool, default=orm.Bool(True))
input('max_meta_convergence iterations', valid_type=orm.Int, default=orm.Int(5))
input ('volume_convergence', valid_type=orm.Float, default=orm.Float(8.01))

¢5AIIDA

40f 29

MODULARITY ISKING

The most important part of work chains is: modularity

» Tackle a well-defined problem

» Create generic reusable components

Example: compute the electronic band structure
Band structure
—Relax
PwBaseWorkChain
PwBaseWorkChain
— SCF
I—PwBaseWorkChain
— Bands
I—PwBaseWorkChain

¢5AIIDA

PwBaseWorkChain

class PwBaseWorkChain(BaseRestartWorkChain):
"nviorkchain to run a Quantum ESPRESSO pw.x calculation with automated error handling"""

@classmethod
def define(cls, spec):
super (PwBaselorkChain, cls).define(spec)

spec
spec
spec

spec.
spec.

spec
spec
spec

spec.

spec
spec
spec
spec

input('code’, valid_ type=orm.Code)

.input("structure’, valid_type=orm.StructureData)

input(’kpoints', valid type=orn.KpointsData, required=False)
input('kpoints_distance', valid_type=orm.Float, required-False)
input(’kpoints_force parity’, valid_type=orm.Bool, required=False)
1input(*parameters’, valid_type=orm.Dict)

.input_namespace('pseudos’, required-False, dynamic=True)

input (' pseudo_family’, valid_type=orm.Str, required=False)
input('parent_folder’, valid_type=orm.RemoteData, required=False)
input('vchw_table', valid_type=orm.SinglefileData, required=False)
input('settings', valid_type=orm.Dict, required=False)
input('options’, valid_type=orm.Dict, required=False)

1input ('automatic_parallelization', valid_typesorm.Dict, required=False)

PwBandsWorkChain

class PwBandsWorkChain(WorkChain)
“"“Workchain to compute a band structure for a given structure using Quantum ESPRESSO pw.x"""

@classmethod
def define(cls, spec):
super (PwBandsiWorkchain, cls).define(spec)

spec.

spec

spec.
.input('structure’, valid_type=orm.StructureData)
.input(*nbands_factor', valid_type=orm.Float, default=orm.Float(1.2))

spec
spec

expose_inputs(PwRelaxWorkChain, namespace='relax', exclude=('structure’,))
expose_inputs(PwBaseWorkChain, namespace='sct', exclude=('structure’,))
expose_inputs(PwBaseWorkChain, namespace='bands', exclude=('structure’,))

40f 29

NESTED WORK CHAINS

What do the inputs look like of a nested work chain?

inputs = {
"structure’: structure,
‘relax': {
*hase': {
‘code’: code,
‘pseudo_family': pseudo_family,
"kpoints_distance': Float(d.5),

‘parameters': parameters,

1
*meta_convergence': Bool(False),

}
"sef': {
*code': code,
*pseudo_fanily': pseudo_family,
*kpoints_distance': Float(0.2),
*parameters’: parameters,

*bands': {
*code': code,
*pseudo_fanily': pseudo_family,
*kpoints_distance': Float(0.15),
*parameters’: parameters,

¥

1
**inputs)

submit (PwBandshorkChain,

50f 29

¢5AIDA

NESTED WORK CHAINS

What do the inputs look like of a nested work chain?

inputs = {
"structure’: structure,
‘relax': {
*hase': {

‘code’: code,
‘pseudo_family': pseudo_family,
"kpoints_distance': Float(d.5),
‘parameters': parameters,

1
*meta_convergence': Bool(False),

}

"sef': {
*code': code,
*pseudo_fanily': pseudo_family,
*kpoints_distance': Float(0.2),
*parameters’: parameters,

*bands': {
*code': code,
*pseudo_fanily': pseudo_family,
*kpoints_distance': Float(0.15),
*parameters’: parameters,

}

submit (PnBandshorkChain, **inputs)

And how do we submit a sub process in a work chain?

def run_relax(self):

"""Run the PwRelaxWorkChain to run a relax Pwalculation.”"”
inputs = AttributeDict(self.exposed_inputs(PwRelaxWorkChain, namespace='relax'))
inputs.structure = self.ctx.current_structure

running = self.submit(PwRelaxWorkChain, **inputs)

self.report('launching PwRelaxWorkChain<{}>'.format(running.pk))

return ToContext (workehain_relax=running)

¢5AIDA

50f 29

CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).

OOOA”DA 60f29

CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).

- Data provenance.

OOOA”DA 60f29

CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).
- Data provenance.

- Possibilities to do error handling and automatic restarts.

¢5AilIDA

60f29

CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).
- Data provenance.

- Possibilities to do error handling and automatic restarts.

But to be truly useful in science, we need more:

¢5AilIDA

60f29

CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).
- Data provenance.

- Possibilities to do error handling and automatic restarts.
But to be truly useful in science, we need more:

- Increase of productivity.

¢5AilIDA

60f29

CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).

- Data provenance.

Possibilities to do error handling and automatic restarts.

But to be truly useful in science, we need more:

Increase of productivity.

More rigid way of performing computations, data analysis with less possibilities of shortcuts.

¢5AilIDA

60f29

CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).

- Data provenance.

Possibilities to do error handling and automatic restarts.

But to be truly useful in science, we need more:

Increase of productivity.

More rigid way of performing computations, data analysis with less possibilities of shortcuts.

More time to analyze, interpret and design new studies.

¢5AilIDA

60f29

CURRENT STATUS

¢5AIIDA

We now have:

A nice Python interface to your code (if not in Python already).
Data provenance.

Possibilities to do error handling and automatic restarts.
But to be truly useful in science, we need more:

Increase of productivity.

More rigid way of performing computations, data analysis with less possibilities of shortcuts.

More time to analyze, interpret and design new studies.

New novel ways to traverse domains (in material science, enable multi-scale).

60f29

CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).
- Data provenance.

- Possibilities to do error handling and automatic restarts.
But to be truly useful in science, we need more:

- Increase of productivity.

- More rigid way of performing computations, data analysis with less possibilities of shortcuts.
- More time to analyze, interpret and design new studies.

- New novel ways to traverse domains (in material science, enable multi-scale).

- Possibilities of utilizing different codes for different purposes, interchangeably.

OOOA”DA 60f29

CURRENT STATUS

We now have:

- A nice Python interface to your code (if not in Python already).
- Data provenance.

- Possibilities to do error handling and automatic restarts.
But to be truly useful in science, we need more:

- Increase of productivity.

- More rigid way of performing computations, data analysis with less possibilities of shortcuts.
- More time to analyze, interpret and design new studies.

- New novel ways to traverse domains (in material science, enable multi-scale).

- Possibilities of utilizing different codes for different purposes, interchangeably.

- If possible, make the work to be performed independent of the code.

OOOA”DA 60f29

DAILY LIFE OF A COMPUTATIONAL SCIENTIST

oooAiiDA 70f29

DAILY LIFE OF A COMPUTATIONAL SCIENTIST

oooAiiDA 80of29

DAILY LIFE OF A COMPUTATIONAL SCIENTIST

calculation calculation calculation

oooAiiDA 90f29

DAILY LIFE OF A COMPUTATIONAL SCIENTIST

sample

pool

! ! !
TR

¢5AIDA

100f 29

DAILY LIFE OF A COMPUTATIONAL SCIENTIST

calculation

calculation

calculation

result

oocAiiDA 110f29

DAILY LIFE OF A COMPUTATIONAL SCIENTIST

calculation calculation calculation

calculation calculation calculation

calculation calculation calculation

oocAiiDA 120f 29

DAILY LIFE OF A COMPUTATIONAL SCIENTIST

calculation calculation calculation

calculation calculation calculation

calculation calculation calculation

result result result

oocAiiDA 130f 29

DAILY LIFE OF A COMPUTATIONAL SCIENTIST

calculation calculation calculation

calculation calculation calculation

calculation calculation calculation

result result result

oocAiiDA 140f 29

DAILY LIFE OF A COMPUTATIONAL SCIENTIST

an example
s Sample
pool

! ! !

calculation calculation calculation

calculation calculation calculation

calculation calculation calculation

oocAiiDA 150f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

? - We start with a structure (can of course have been generate by
some other workflow).

restart

converge

result

oocAiiDA 160f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

? - We start with a structure (can of course have been generate by
some other workflow).

restart - The restart workchain (currently independent of code).

converge

result

oocAiiDA 160f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

? - We start with a structure (can of course have been generate by
some other workflow).

restart - The restart workchain (currently independent of code).

- The VASP workchain. Handles the setup of the VASP calculation
(make sure inputs etc. are passed correctly to the VASP
calculation plugin). Should also auto-parallelize.

converge

result

oooAiiDA 160f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

I - We start with a structure (can of course have been generate by
some other workflow).

restart - The restart workchain (currently independent of code).

- The VASP workchain. Handles the setup of the VASP calculation
(make sure inputs etc. are passed correctly to the VASP
calculation plugin). Should also auto-parallelize.

- The verify workchain. Handles the check of physical principles
outside of VASP.

converge

result

oooAiiDA 160f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

I - We start with a structure (can of course have been generate by
some other workflow).

restart - The restart workchain (currently independent of code).

- The VASP workchain. Handles the setup of the VASP calculation
(make sure inputs etc. are passed correctly to the VASP
calculation plugin). Should also auto-parallelize.

- The verify workchain. Handles the check of physical principles
outside of VASP.

- The relaxation workchain. Handles relaxations of the structure.

converge

result

oooAiiDA 160f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

? - We start with a structure (can of course have been generate by
some other workflow).

restart - The restart workchain (currently independent of code).

- The VASP workchain. Handles the setup of the VASP calculation
(make sure inputs etc. are passed correctly to the VASP
calculation plugin). Should also auto-parallelize.

- The verify workchain. Handles the check of physical principles

outside of VASP.
converge - The relaxation workchain. Handles relaxations of the structure.
- The convergence workchain. Determines convergence
parameters (typically the plane wave cutoff and k-point grid).

oooAiiDA 160f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

- We start with a structure (can of course have been generate by

some other workflow).
restart - The restart workchain (currently independent of code).
vasp » The VASP workchain. Handles the setup of the VASP calculation
. (make sure inputs etc. are passed correctly to the VASP
verify calculation plugin). Should also auto-parallelize/run-time opt.
relax - The verify workchain. Handles the check of physical principles
outside of VASP.

converge

- The relaxation workchain. Handles relaxations of the structure.

- The convergence workchain. Determines convergence
result parameters (typically the plane wave cutoff and k-point grid).

oquiiDA 17 of 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

- We start with a structure (can of course have been generate by

some other workflow).
restart - The restart workchain (currently independent of code).
vasp » The VASP workchain. Handles the setup of the VASP calculation
. (make sure inputs etc. are passed correctly to the VASP
verify calculation plugin). Should also auto-parallelize/run-time opt.
relax - The verify workchain. Handles the check of physical principles
outside of VASP.

converge

- The relaxation workchain. Handles relaxations of the structure.

- The convergence workchain. Determines convergence
result parameters (typically the plane wave cutoff and k-point grid).

oﬂoAiiDA 180f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

- We start with a structure (can of course have been generate by

some other workflow).
restart - The restart workchain (currently independent of code).
vasp » The VASP workchain. Handles the setup of the VASP calculation
. (make sure inputs etc. are passed correctly to the VASP
verify calculation plugin). Should also auto-parallelize/run-time opt.
relax - The verify workchain. Handles the check of physical principles
outside of VASP.

converge

- The relaxation workchain. Handles relaxations of the structure.

- The convergence workchain. Determines convergence
result parameters (typically the plane wave cutoff and k-point grid).

oﬁoAiiDA 190f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

- We start with a structure (can of course have been generate by

some other workflow).
restart - The restart workchain (currently independent of code).
vasp » The VASP workchain. Handles the setup of the VASP calculation
. (make sure inputs etc. are passed correctly to the VASP
verify calculation plugin). Should also auto-parallelize/run-time opt.
relax - The verify workchain. Handles the check of physical principles
outside of VASP.

converge

- The relaxation workchain. Handles relaxations of the structure.

- The convergence workchain. Determines convergence
result parameters (typically the plane wave cutoff and k-point grid).

¢5AIIDA 200

AN EXAMPLE - MATERIAL SCIENCE - VASP

- The material scientist should not need to worry about these
restart things.

vasp

verify

relax

converge

result

¢5AIIDA S

AN EXAMPLE - MATERIAL SCIENCE - VASP

- The material scientist should not need to worry about these
restart things.

« Mostly numerics.
vasp

verify

relax

converge

result

¢5AIIDA S

AN EXAMPLE - MATERIAL SCIENCE - VASP

- The material scientist should not need to worry about these
restart things.

« Mostly numerics.

- Probably a lot of error correction, restarts etc. based on
verify knowledge and input/output analysis. Today, knowledge of this is
regarded as highly valuable competence.

vasp

relax

converge

result

¢5AIIDA

210f29

AN EXAMPLE - MATERIAL SCIENCE - VASP

- The material scientist should not need to worry about these
restart things.

« Mostly numerics.

- Probably a lot of error correction, restarts etc. based on
verify knowledge and input/output analysis. Today, knowledge of this is
regarded as highly valuable competence.

- Minimal base workchain set for calculations with no prior
knowledge.

vasp

relax

converge

result

¢5AIIDA

210f29

AN EXAMPLE - MATERIAL SCIENCE - VASP

- The material scientist should not need to worry about these
restart things.

« Mostly numerics.

Probably a lot of error correction, restarts etc. based on
verify knowledge and input/output analysis. Today, knowledge of this is
regarded as highly valuable competence.

- Minimal base workchain set for calculations with no prior
knowledge.

Should in principle be independent of code and, in fact also the
technique used.

vasp

relax

converge

result

¢5AIIDA

210f29

AN EXAMPLE - MATERIAL SCIENCE - VASP

bands

the science

- Refactor code.

¢5AIDA

220f29

AN EXAMPLE - MATERIAL SCIENCE - VASP

bands

the science

- Refactor code.
- Refactor science (lean
science).

¢5AIDA

220f29

AN EXAMPLE - MATERIAL SCIENCE - VASP

¢5AIDA

the science

- Refactor code.

- Refactor science (lean
science).

- Try to make the scientific
workchains reusable,
preferable independent of
code.

220f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP

¢5AIDA

the science

Refactor code.

Refactor science (lean
science).

Try to make the scientific
workchains reusable,
preferable independent of
code.

Plugin developers should
unite and try to merge the
codes within one class.

220f29

AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

- Convergence tests should always be done (how many are actually
doing this regularly?). For plane wave DFT codes, this typically

covers the plane wave cutoff and k-point sampling.
restart

converge

result
So let us have a look at a bit more complex workchain outline.

oooAiiDA 230f29

AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

- Convergence tests should always be done (how many are actually
doing this regularly?). For plane wave DFT codes, this typically
covers the plane wave cutoff and k-point sampling.

- Should be able to perform convergence tests on the relevant
parameters (of course not always possible due to limited
resources).

restart

converge

result
So let us have a look at a bit more complex workchain outline.

oooAiiDA 230f29

AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

- Convergence tests should always be done (how many are actually
doing this regularly?). For plane wave DFT codes, this typically
covers the plane wave cutoff and k-point sampling.

- Should be able to perform convergence tests on the relevant
parameters (of course not always possible due to limited
resources).

- Should not harden the result more than necessary (waste
computational resources, bad for the environment).

restart

converge

result
So let us have a look at a bit more complex workchain outline.

oooAiiDA 230f29

AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

- Convergence tests should always be done (how many are actually
doing this regularly?). For plane wave DFT codes, this typically
covers the plane wave cutoff and k-point sampling.

- Should be able to perform convergence tests on the relevant
parameters (of course not always possible due to limited
resources).

- Should not harden the result more than necessary (waste
computational resources, bad for the environment).

- Necessary to also test relative convergence, e.g. say:

restart

converge

AEg =E) — E}

result
So let us have a look at a bit more complex workchain outline.

oooAiiDA 230f29

AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

!

restart

converge

result

¢5AIDA

spec.outline (
cls.initialize,
if_(cls.run_conv_calcs) (
while_(cls.run_pw_conv_calcs) (

)y

cls
cls
cls
cls

.init_pw_conv_calc,
.init_next_workchain,
.run_next_workchain,
.results_pw_conv_calc

cls.analyze_pw_conv,

while_ (cls.run_kpoints_conv_calcs) (
.init_kpoints_conv_calc,
.init_next_workchain,
.run_next_workchain,
.results_kpoints_conv_calc

cls
cls
cls
cls

240f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

!

restart

converge

result

¢5AIDA

spec.outline (
cls.initialize,
if_(cls.run_conv_calcs) (
while_(cls.run_pw_conv_calcs) (

)y

cls
cls
cls
cls

.init_pw_conv_calc,
.init_next_workchain,
.run_next_workchain,
.results_pw_conv_calc

cls.analyze_pw_conv,

while_ (cls.run_kpoints_conv_calcs) (
.init_kpoints_conv_calc,
.init_next_workchain,
.run_next_workchain,
.results_kpoints_conv_calc

cls
cls
cls
cls

250f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

!

restart

converge

result

¢5AIDA

cls.init_disp_conv,

while_(cls.run_pw_conv_disp_calcs) (
cls.
cls.
.run_next_workchain,
cls.

cls

)
if_ (cls
cls

) s

while_(cls.run_kpoints_conv_disp_calcs) (
cls.
cls.
cls.

cls

init_pw_conv_calc,
init_next_workchain,

results_pw_conv_calc

.analyze_pw_after_disp) (
.analyze_pw_conv,

init_kpoints_conv_calc,
init_next_workchain,
run_next_workchain,

.results_kpoints_conv_calc

260f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

cls.init_comp_conv,

while_(cls.run_pw_conv_comp_calcs) (
cls.init_pw_conv_calc,
cls.init_next_workchain,
cls.run_next_workchain,

restart cls.results_pw_conv_calc

)

if_(cls.analyze_pw_after_comp) (
cls.analyze_pw_conv,

)

while_(cls.run_kpoints_conv_comp_calcs) (
cls.init_kpoints_conv_calc,

converge cls.init_next_workchain,

cls.run_next_workchain,

cls.results_kpoints_conv_calc
result),

cls.analyze_conv,
cls.store_conv,

oooAiiDA 27 0f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP - THE CONVERGENCE WORKCHAIN

!

restart

converge

result

¢5AIDA

cls
cls
cls
cls
cls

.init_converged,
.init_next_workchain,
.run_next_workchain,
.verify_next_workchain,
.results,

cls.

finalize

280f 29

AN EXAMPLE - MATERIAL SCIENCE - VASP - EXPOSING INPUTS/OUTPUTS

!

restart

converge

result

¢5AIDA

- The workchain specifications
spec.input
spec.output

can potentially yield a lot of boiler plate code that is hard to
maintain for nested workchains.

AiiDA to the rescue

spec.expose_inputs
spec.export_outputs

For instance if we want to define the same outputs in the converge
workchain as defined in the relax workchain we do

spec.export_outputs (relax)
in the define section of the converge workchain.

Can also exclude certain input/output in case that is for instance
modified in that particular workchain. Check the manual.

290f 29

