
Converting Python 2 to
Python 3

Writing compliant hybrid code, the AiiDA way

Oscar Arbelaez Echeverri, Conrad Johnston

- AiiDA changes 0.x to 1.0
- Python 3 support

- This covers python 2 to 3
- We want the migration to be

painless

Motivation

Python 2 is at its lifetime end

https://python3statement.org/

What does that mean?

● Your python2 installation is not going away

● In a way you can still use it, and it will

probably live forever (in our hearts)

- No new features will be added to python2

- If you find a bug or a problem with python2

you’re alone, people is not going to fix it

- New versions of libraries will not support

python2 (you’ll see why)

Libraries will be or have already dropped support for python2 https://python3statement.org/

https://python3statement.org/

Python 3.7 is also the best
python yet™

F-strings are awesome (python 3.6+)

In [1]: result = 1.5

In [2]: print(f'Our result is {result}')

Our result is 1.5

In [3]: print(f'Half result is {result / 2}')

Half result is 0.75

They added a matrix multiplication operator for us scientists

In [1]: import numpy as np

In [2]: a = np.array([[1, 0], [0, 1]])

In [3]: b = np.array([[4, 1], [2, 2]])

In [4]: a @ b
Out[4]:
array([[4, 1],
 [2, 2]])

Code in your language

In [1]: ñame = "la mejor fruta"

In [2]: simulación = 123

In [3]: print(ñame)

la mejor fruta

Unpacking is really handy

In [1]: command = 'new variable C hi there'

In [2]: instruction, *arguments = command.split(maxsplit=3)

In [3]: instruction
Out[3]: 'new'

In [4]: arguments
Out[4]: ['variable', 'C', 'hi there']

You can have all of that and...

● Safer comparisons

● Better memory management

● Better exception handling

● Keyword only arguments

● And more...

However...

Python 3 is not yet supported in all the

platforms you might want to run on, looking

at you clusters.

So for a while there’s a need to support

both python 2 and python 3
Photo credit OCLF, licenced as CC BY, https://www.flickr.com/photos/olcf/

https://www.flickr.com/photos/olcf/

(* we don’t have exact dates yet) AiiDA is also dropping support for python 2

Be compatible with all the AiiDA versions we just talked about by supporting py 2 and 3 (* maybe 2.x)

- Update your plugin code to
run in python 3.6 and above

- Please support python 2 & 3

Let some tools migrate the code
for you

lib2to3

● Pythons own

● Would convert python 2 code into

python 3 code

https://docs.python.org/3.6/library/2to3.html

def greet(name):
 print "Hello, {0}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

def greet(name):
 print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

python -m lib2to3 python2.py -w

https://docs.python.org/3.6/library/2to3.html

six

● Runtime dependency

● Helps you know if you’re working on

a python 2 or python 3 environment

● Provides “wrappers” so that your

code works consistently between

python 2 and 3

https://six.readthedocs.io/

import six

if six.PY2:
 # do something special for py2
 pass

data = {'a': 1, 'b': 2}
for key in six.iterkeys(data):
 six.print_(key)

https://six.readthedocs.io/

python-future

● Makes python 2 compatible with

both python 2 and 3

● Makes python 3 code compatible

with python 2 and 3

https://python-future.org/

def greet(name):
 print "Hello, {0}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

from __future__ import print_function
from builtins import input
def greet(name):
 print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

futurize python2.py -w

https://python-future.org/

python-future

● Makes python 2 compatible with

both python 2 and 3

● Makes python 3 code compatible

with python 2 and 3

https://python-future.org/

def greet(name):
 print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

from __future__ import print_function
...
from builtins import input
from future import standard_library
standard_library.install_aliases()
def greet(name):
 print("Hello, {0}!".format(name))
...

pasteurize python2.py -w

https://python-future.org/

python-modernize

● Makes python 2 compatible with

both python 2 and 3

● Uses six as runtime dependency

https://python-modernize.readthedocs.io/en/latest/

def greet(name):
 print "Hello, {0}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

from __future__ import print_function
from six.moves import input
def greet(name):
 print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

python-modernize python2.py -w

https://python-modernize.readthedocs.io/en/latest/

Other tools we recommend

Used in AiiDA-Core development:

● YAPF - automatically formats your python code

● Pylint - finds some issues with your code before you run it

● Prospector - analyses your python code

● Pre commit - runs your code “fixers” or any other command on commit

Another nice tool:

● Black - no questions asked formating of your python code

We are happy to support you if you decide to use one of these.

https://github.com/google/yapf
https://www.pylint.org/
https://pypi.org/project/prospector/
https://pre-commit.com/
https://github.com/ambv/black

How-to

Porting Workflow

Start
Apply one

fixer
Make

commit
Run unit

tests

Applied
all

fixers?
Done!

No

Yes

Python Modernize Example : 2to3 fixers

From running:
python-modernize -w example.py

Python 2

def metric_to_imperial(meters):

 """Convert meters to feet and inches"""

 total_inches = meters / 0.0254

 feet = int(total_inches) / 12

 inches = total_inches - (feet * 12)

 print "%s m is %s ft %.3f in"\

 %(meters, feet, inches)

Python 2/3

from __future__ import print_function

def metric_to_imperial(meters):

 """Convert meters to feet and inches"""

 total_inches = meters / 0.0254

 feet = int(total_inches) / 12

 inches = total_inches - (feet * 12)

 print("%s m is %s ft %.3f in"\

 %(meters, feet, inches))

Python Modernize Example : 2to3 fixers

From running:
python-modernize -f default -f classic_division example.py -w

Python 2

def metric_to_imperial(meters):

 """Convert meters to feet and inches"""

 total_inches = meters / 0.0254

 feet = int(total_inches) / 12

 inches = total_inches - (feet * 12)

 print "%s m is %s ft %.3f in"\

 %(meters, feet, inches)

Python 2/3

from __future__ import division

from __future__ import print_function

def metric_to_imperial(meters):

 """Convert meters to feet and inches"""

 total_inches = meters // 0.0254

 feet = int(total_inches) // 12

 inches = total_inches - (feet * 12)

 print("%s m is %s ft %.3f in"\

 %(meters, feet, inches))

Python Modernize Example : Six

From running:
python-modernize -f default -w

Python 2

def conversion_calc():

 input_length = raw_input(

 "Enter a length in meters:"

)

 metric_to_imperial(float(input_length))

Python 2/3

from six.moves import input

def conversion_calc():

 input_length = input(

 "Enter a length in meters:"

)

 metric_to_imperial(float(input_length))

Details

Dictionaries

Python 2 Python 3

keys() / values() / items() Returns list Returns view

has_key() Works Use in operator instead

Key ordering “Not” ordered < 3.6 : Not ordered
 3.6 : Insertion ordered (implementation)
>= 3.7 : Insertion ordered (language feature)

Dictionaries

Python 2

d = {'a': 1, 'b' : 2, 'c': 3}

keys = d.keys()

values = d.values()

items = d.items()

if d.has_key('a'):

 print "Found 'a'"

if keys != ['a', 'b', 'c', 'd']:

 print "Missing key!"

Python 2/3

from __future__ import print_function

d = {'a': 1, 'b' : 2, 'c': 3}

keys = d.keys()

values = d.values()

items = d.items()

if 'a' in d.keys():

 print("Found 'a'")

if sorted(keys) != ['a', 'b', 'c', 'd']:

 print("Missing key!")

Dictionaries: Views
Views are dynamic, not static.

Python 2

d = {'a': 1, 'b' : 2}

keys = d.keys()

print keys[0]

d['c'] = 3

if 'c' in keys:

 print "Found key: 'c'"

Python 3

d = {'a': 1, 'b' : 2}

keys = d.keys()

print(list(keys)[0])

d['c'] = 3

if 'c' in keys:

 print("Found key: `c`")

Dictionaries: Iterators
No iteritems() in Python 3, but items() returns a view which can be iterated

Python 2

d = {'a': 1, 'b' : 2, 'c': 3}

for key, value in d.iteritems():

 print key, value

Python 2/3

from __future__ import print_function

d = {'a': 1, 'b' : 2, 'c': 3}

for key, value in d.items():

 print(key, value)

import six

for key, value in six.iteritems(d):

 print(key, value)

Exceptions
Python 2

def do_something(x):

 raise ValueError('Value of x must spark joy')

try:

 do_something(1)

except Exception as exc:

 log = exc.message

 print "Bad value: {}".format(exc.message)

try:

 do_something(1)

except Exception as exc:

 raise BonusException(exc)

Python 2/3

from __future__ import print_function

def do_something(x):

 raise ValueError('Value of x must spark joy')

try:

 do_something(1)

except Exception as exc:

 log = str(exc)

 print("Bad value: {}".format(exc.args[0]))

try:

 do_something(1)

except Exception as exc:

 raise six.raise_from(BonusException, exc)

Unicode

● ASCII: 7 bits, maps all unaccented English characters, numbers, punctuation

● ANSI: 8 bits, consisting of ASCII + localisation dependent bonus characters (code pages)
○ Can’t mix code pages!

● DBCS: Up to two bytes, depending on character, for Asian languages

● Unicode: 16 bit (in principle, but not really)
○ Maps using `code points`
○ Example U+0041, maps to A
○ Encoding specifies how to store the code point in memory

■ UTF-8, UTF-16, UTF-32, ASCII, etc
■ UTF-x guarantees that the code point can be stored

Unicode vs Str vs Bytes

Python 2

some_string = "Important stuff"

type(some_string) # <type 'str'>

some_unicode = u"\U0001f634"

type(some_unicode) # <type 'unicode'>

print some_unicode

Python 3

some_string = "Important stuff \U0001f634"

type(some_string) # <class 'str'>

some_bytes = b"Important stuff"

type(some_bytes) # <class 'bytes'>

print(some_bytes)

.encode(), .decode()

Python 2

some_unicode = u"\U0001f634"

len(some_unicode) # 1

bytes = some_unicode.encode('utf-8')

print bytes

len(bytes) # 4

print u"hello " + "there" # Implicit!

unicode bytes
.decode()

.encode()

Python 3

print "hello " + b"there" # TypeError!

File Handling

● Python 2 string are bytes, Python 3 string are Unicode

● Am I reading binary or text? If text, what is its encoding?

Python 2/3

For text files

import io

with io.open('myfile.dat', encoding='utf-8', mode='w') as fhandle:

 fhandle.write(s)

For bytes files

with io.open('myfile.dat', mode='wb') as fhandle:

 fhandle.write(s)

Unicode Goals

1. Make a Unicode sandwich
● Bytes on the outside, Unicode filling

2. Know what you have
● Unicode or bytes?
● For bytes, what encoding?

https://nedbatchelder.com/text/unipain.html

Summary

1. Python 2 support is ending imminently

2. AiiDA plugins need to support both 2 and 3

3. We want this to be painless for you!

Acknowledgments

Tiziano Müller, University of Zurich

