Oscar Arbelaez Echeverri, Conrad Johnston

Converting Python 2 to
Python 3

Writing compliant hybrid code, the AiiDA way

MARVEL

EPFL TH EOS DRIVING
THE EXASCALE
THEORY AND SIMULATION O O O . WX TRANSITION

OF MATERIALS

- AIIDA changes 0.xto 1.0
- Python 3 support

- This covers python 2to 3
- We want the migration to be
painless

Motivation

Python 2 is at its lifetime end

https://python3statement.org/

prthon Python 36
Python 3.5

Python 3.4

Python 3.3 Python 3.7

Python 2.7

What does that mean?

e Your python2 installation is not going away - No new features will be added to python2
e Inawayyou canstill useit, and it will - If youfind a bug or a problem with python2
probably live forever (in our hearts) you're alone, people is not going to fix it

- New versions of libraries will not support
python2 (you’ll see why)

IPython

pandas Fython 3 only
scikit-learn ' ' | ' | Pythor
Python2 & 3
| cext Python 3 only
Python2 & 3
| Numpy | Fy 3 full

Py 2 & 3 full

Libraries will be or have already dropped support for python2 https://python3statement.org/

https://python3statement.org/

Python 3.7 Is also the best
python yet™

In [1]: result = 1.5

In [2]: print(f'Our result is [HCENIRS)

Our result is 1.5

In [3]: print(f'Half result is [[EENIIREEN)

Half result is 0.75

F-strings are awesome (python 3.6+)

In [1]:
In [2]: a
In [3]: b

import numpy as np

np.array([[1, 0],

np.array([[4, 1],

In [4]: EHENB

Out[4]:

array([[4, 1],

[2, 2]])

They added a matrix multiplication operator for us scientists

[0, 1]1)
[2, 2]])

In [1]: fame = "la mejor fruta"

In [2]: simulaci@n = 123

In [3]: print(fame)

la mejor fruta

Code in your language

In [1]: command = 'new variable C hi there’

In [2]: DRSEFUCTIORNINGFGUREAES - command.split(maxsplit=3)

In [3]: instruction
Out[3]: 'new'

In [4]: arguments
Out[4]: ['variable', 'C', "hi there']

Unpacking is really handy

You can have all of that and...

Safer comparisons

Better memory management
Better exception handling
Keyword only arguments
And more...

However...

1B
il i}

Python 3 is not yet supported in all the
platforms you might want to run on, looking
at you clusters.

So for a while there’s a need to support

both python 2 and python 3
Photo credit OCLF, licenced as CC BY, https://www.flickr.com/photos/olcf/

https://www.flickr.com/photos/olcf/

Today 2020

2.X py 3

(* we don’t have exact dates yet) AiiDA is also dropping support for python 2

AiIDA 1.x FEleilas REVfe]ly
py 2 Py 2 WPy 2&3

AiiDA 1.x
py 3

. Plugin @ Plugin
AlIDA 2.x oy 2&3

Be compatible with all the AiiDA versions we just talked about by supporting py 2 and 3 (* maybe 2.x)

- Update your plugin code to
run in python 3.6 and above
- Please support python2 & 3

Let some tools migrate the code
for you

lib2to3

e Pythonsown
e Would convert python 2 code into
python 3 code

https://docs.python.org/3.6/library/2to3.html

def greet(name):
print "Hello, {6}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

python -m 1lib2to3 python2.py -w

def greet(name):
print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

https://docs.python.org/3.6/library/2to3.html

SIX

e Runtime dependency

e Helps you know if you're working on
a python 2 or python 3 environment

e Provides “wrappers” so that your
code works consistently between
python 2 and 3

https://six.readthedocs.io/

import six

if six.PY2:
do something special for py2
pass

data = {'a': 1, 'b': 2}
for key in six.iterkeys(data):
six.print_(key)

https://six.readthedocs.io/

python-future

e Makes python 2 compatible with
both python 2 and 3

e Makes python 3 code compatible
with python 2 and 3

https://python-future.org/

def greet(name):
print "Hello, {6}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

futurize python2.py -w

from __future__ import print_function
from builtins import input
def greet(name):

print("Hello, {@}!".format(name))
print("What's your name?")
name = input()
greet(name)

https://python-future.org/

python-future

e Makes python 2 compatible with
both python 2 and 3

e Makes python 3 code compatible
with python 2 and 3

https://python-future.org/

def greet(name):
print("Hello, {6}!".format(name))
print("What's your name?")
name = input()
greet(name)

pasteurize python2.py -w

from __future__ import print_function

...

from builtins import input

from future import standard_library
standard_library.install_aliases()

def greet(name):
print("Hello, {0}!".format(name))

...

https://python-future.org/

python-modernize

e Makes python 2 compatible with
both python 2 and 3
e Usessix as runtime dependency

https://python-modernize.readthedocs.io/en/latest/

def greet(name):
print "Hello, {6}!".format(name)
print "What's your name?"
name = raw_input()
greet(name)

python-modernize python2.py -w

from __future__ import print_function
from six.moves import input
def greet(name):

print("Hello, {0}!".format(name))
print("What's your name?")
name = input()
greet(name)

https://python-modernize.readthedocs.io/en/latest/

Other tools we recommend

Used in AiiDA-Core development:

YAPE - automatically formats your python code

Pylint - finds some issues with your code before you run it

Prospector - analyses your python code

Pre commit - runs your code “fixers” or any other command on commit

Another nice tool:
e Black - no questions asked formating of your python code

We are happy to support you if you decide to use one of these.

https://github.com/google/yapf
https://www.pylint.org/
https://pypi.org/project/prospector/
https://pre-commit.com/
https://github.com/ambv/black

How-to

Porting Workflow

Applied
all
fixers?

Apply one Make Run unit
fixer commit tests

Python Modernize Example : 2to3 fixers

From running:
python-modernize -w example.py

Python Modernize Example : 2to3 fixers

From running:
python-modernize -f default -f classic division example.py -w

Python Modernize Example : Six

six.moves input

():
input_length input(

():
input_length raw_input(

)
metric_to imperial((input_length))

)

metric_to_imperial(

From running:
python-modernize -f default -w

(input_length))

Details

Dictionaries

keys() / values() / items()
has_key()

Key ordering

Python 2
Returns list
Works

“Not” ordered

Python 3
Returns view
Use in operator instead

< 3.6 : Not ordered
3.6 : Insertion ordered (implementation)
>= 3.7 : Insertion ordered (language feature)

Dictionaries

keys = d.keys()
values d.values()

items d.items()

d.has_key/(

keys

___future_ print_function
p : 1 3}
keys = d.keys()
values d.values()

items d.items()

d.keys():

sorted(keys)
(

Dictionaries: Views

Views are dynamic, not static.

Dictionaries: Iterators

No iteritems() in Python 3, but items() returns a view which can be iterated

) 12, 'c': 3}

key, value d.iteritems():

key, value

___future__ print_function

) 12, 'c': 3}

key, value d.items():
(key, value)

six
key, value six.iteritems(d):
(key, value)

Exceptions

(x):

ValueError(

do_something(1)
Exception exc:
log exc.message
.format(exc.message)

do_something(1)
Exception exc:
BonusException(exc)

___future__ print_function

(x):

ValueError(

do_something(1)
Exception
log = str(exc)
(.format(exc.args[0]))

do_something(1)
Exception exc:
six.raise_from(BonusException, exc)

Unicode

e ASCII: 7 bits, maps all unaccented English characters, numbers, punctuation

e ANSI: 8 bits, consisting of ASCII + localisation dependent bonus characters (code pages)
o Can’t mix code pages!

e DBCS: Uptotwo bytes, depending on character, for Asian languages

e Unicode: 16 bit (in principle, but not really)
o Maps using ‘code points’
o Example U+0041, mapsto A
o Encoding specifies how to store the code point in memory
m UTF-8, UTF-16,UTF-32, ASCII, etc
m UTF-xguarantees that the code point can be stored

Unicode vs Str vs Bytes

some_string
(some_string)

some_unicode
(some_unicode)

some_unicode

some_string
(some_string)

some_bytes
(some_bytes)

(

.encodel(), .decode()

.encode()
.decode()

File Handling

e Python 2 string are bytes, Python 3 string are Unicode
e Amlreadingbinary or text? If text, what is its encoding?

Unicode Goals

1. Make a Unicode sandwich
e Bytes on the outside, Unicode filling

2. Know what you have

e Unicode or bytes?
e For bytes, what encoding?

https://nedbatchelder.com/text/unipain.html

Summary

1. Python 2 support is ending imminently
2. AiIiiDA plugins need to support both 2 and 3

3. We want this to be painless for you!

Acknowledgments

Tiziano Miiller, University of Zurich

MARVEL
eprL [HEOS Mo oo (NN i

OF MATERIALS ~ nATonAL cenTRe oF compeTencE TN RESEARCH

